Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

A generalized Damköhler number for classifying material processing in hydrological systems

Title data

Oldham, Carolyn ; Farrow, D. E. ; Peiffer, Stefan:
A generalized Damköhler number for classifying material processing in hydrological systems.
In: Hydrology and Earth System Sciences. Vol. 17 (2013) . - pp. 1133-1148.
ISSN 1607-7938
DOI: https://doi.org/10.5194/hess-17-1133-2013

Abstract in another language

Assessing the potential for transfer of pollutants and nutrients across catchments is of primary importance under changing land use and climate. Over the past decade the connectivity/disconnectivity dynamic of a catchment has been related to its potential to export material; however, we continue to use multiple definitions of connectivity, and most have focused strongly on physical (hydrological or hydraulic) connectivity. In contrast, this paper constantly focuses on the dynamic balance between transport and material transformation, and defines material connectivity as the effective transfer of material between elements of the hydrological cycle. The concept of exposure timescales is developed and used to define three distinct regimes: (i) which is hydrologically connected and transport is dominated by advection; (ii) which is hydrologically connected and transport is dominated by diffusion; and (iii) which is materially isolated. The ratio of exposure timescales to material processing timescales is presented as the non-dimensional number, NE, where NE is reaction-specific and allows estimation of relevant spatial scales over which the reactions of interest take place. Case studies within each regime provide examples of how NE can be used to characterise systems according to their sensitivity to shifts in hydrology and gain insight into the biogeochemical processes that are signficant under the specified conditions. Finally, we explore the implications of the NE framework for improved water management, and for our understanding of biodiversity, resilience and chemical competitiveness under specified conditions.

Further data

Item Type: Article in a journal
Refereed: Yes
Additional notes: BAYCEER114467
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Chair Hydrology
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Chair Hydrology > Chair Hydrology - Univ.-Prof. Dr. Stefan Peiffer
Research Institutions > Research Centres > Bayreuth Center of Ecology and Environmental Research- BayCEER
Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences
Research Institutions
Research Institutions > Research Centres
Result of work at the UBT: Yes
DDC Subjects: 500 Science
Date Deposited: 22 Apr 2015 11:58
Last Modified: 17 Apr 2018 09:40
URI: https://eref.uni-bayreuth.de/id/eprint/10885