Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Re-evaluating the general dynamic theory of oceanic island biogeography

Title data

Steinbauer, Manuel ; Dolos, Klara ; Field, Richard ; Reineking, Björn ; Beierkuhnlein, Carl:
Re-evaluating the general dynamic theory of oceanic island biogeography.
In: Frontiers of Biogeography. Vol. 5 (2013) Issue 3 . - pp. 185-194.
ISSN 1948-6596

Official URL: Volltext

Abstract in another language

The general dynamic model of oceanic island biogeography integrates temporal changes in ecological circumstances with diversification processes, and has stimulated current research in island biogeography. In the original publication, a set of testable hypotheses was analysed using regression models: specifically, whether island data for four diversity indices are consistent with the ‘B~ATT²’ model, in which B is a diversity index, A is log(area) and T is time. The four indices were species richness, the number and percentage of single-island endemic species, and a diversification index. Whether the relationships between these indices and time are unimodal (i.e., ‘hump-shaped’) was a key focus, based on the characteristic ontogeny of a volcanic oceanic island. However, the significance testing unintentionally used zero, rather than the mean of the diversity index, as the null hypothesis, greatly inflating F-values and reducing P-values compared with the standard regression approach. Here we first re-analyze the data used to evaluate the general dynamic model in the seminal paper, using the standard null hypothesis, to provide an important qualification of its empirical results. This supports the significance of about half the original tests, the rest becoming non-significant but mostly suggestive of the hypothesized relationship. Then we expand the original analysis by testing additional, theoretically derived functional relationships between the diversity indices, island area and time, within the framework of the ATT² model and using a mixed-effects modelling approach. This shows that species richness peaks earlier in island life-cycles than endemism. Area has a greater effect on species richness and the number of single-island endemics than on the proportion of single-island endemics and the diversification index, and was always better fit as a log–log relationship than as a semi-log one. Finally, the richness–time relationship is positively skewed, the initial rise happening much more quickly than the later decline.

Further data

Item Type: Article in a journal
Refereed: Yes
Additional notes: BAYCEER118224
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Chair Biogeography
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Chair Biogeography > Chair Biogeography - Univ.-Prof. Dr. Carl Beierkuhnlein
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Professorship Disturbance Ecology
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Junior Professorship Biogeographical Modelling
Research Institutions > Research Centres > Bayreuth Center of Ecology and Environmental Research- BayCEER
Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences
Research Institutions
Research Institutions > Research Centres
Result of work at the UBT: Yes
DDC Subjects: 500 Science
Date Deposited: 29 Apr 2015 15:41
Last Modified: 29 Apr 2015 15:41
URI: https://eref.uni-bayreuth.de/id/eprint/11624