Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Arsenic mobilization and iron transformations during sulfidization of As(V)-bearing jarosite

Title data

Johnston, Scott G. ; Burton, Edward D. ; Keene, Annabelle F. ; Planer-Friedrich, Britta ; Voegelin, Andreas ; Blackford, Mark G. ; Lumpkin, Greg R.:
Arsenic mobilization and iron transformations during sulfidization of As(V)-bearing jarosite.
In: Chemical Geology. Vol. 334 (2012) . - pp. 9-24.
ISSN 0009-2541
DOI: https://doi.org/10.1016/j.chemgeo.2012.09.045

Abstract in another language

Jarosite (KFe3(SO4)2(OH)6) is an important host-phase for As in acid mine drainage (AMD) environments and coastal acid sulfate soils (CASS). In AMD and CASS wetlands, jarosite may encounter S(-II) produced by sulfate reducing bacteria. Here, we examine abiotic sulfidization of As(V)-bearing Kjarosite at pH 4.0, 5.0, 6.5 and 8.0. We quantify the mobilization and speciation of As and identify corresponding Fe mineral transformations. Sulfide-promoted dissolution of jarosite caused release of co-precipitated As and the majority of mobilized As was re-partitioned to a readily exchangeable surface complex (AsEx). In general, maximum As mobilization occurred in the highly sulfidized endmembers of all treatments and was greatest at low pH, following the order pH 5.0 ≈ 4.0 > 8.5 > 6.5. Xray absorption spectroscopy revealed that most solid-phase As remained as oxygen-coordinated As(V) when pH values were >5.0 - even during latter stages of sulfidization and the presence of > 100 µM dissolved S(-II). In contrast at pH 4.0, As transitioned from oxygen-coordinated As(V) to a sulfurcoordinated orpiment-like phase. This transition coincided with a marked decrease in AsEx, attenuation of As(aq) and TEM-EDX spectra indicate concurrent formation of nano-scale zones variably enriched in As (~1-15%). Although discordant with geochemical modeling, the formation of an orpiment-like precipitate appears to be a primary control on As mobility during the late stages of complete jarosite sulfidization under acidic conditions (pH 4.0). Mackinawite was the main Fe-mineral end product in all pH treatments. However, at pH 8.0, jarosite rapidly (< 1 h) transformed to a lepidocrocite intermediary. Although lepidocrocite efficiently adsorbed As(aq), the transformation process itself was incongruent with electron transfer to Fe(III). Further investigation is required to determine whether the electron donor triggering this transformation was direct via S(− II), or indirect via surface complexed Fe(II) and hence akin to the widely-known Fe(II)-catalyzed transformation of Fe(III) minerals. The results demonstrate that abiotic sulfidization of As(V)-co-precipitated jarosite can mobilize substantial As and that pH exerts a major control on the subsequent As solid-phase speciation, electron transfer kinetics and Fe mineralization pathways and products. The findings are particularly relevant to heterogeneous sediments in which As-bearing jarosite encounters dissolved sulfide under a range of pH conditions.

Further data

Item Type: Article in a journal
Refereed: Yes
Additional notes: BAYCEER109371
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Professorship Environmental Geochemistry Group
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Professorship Environmental Geochemistry Group > Professorship Environmental Geochemistry - Univ.-Prof. Dr. Britta Planer-Friedrich
Research Institutions > Research Centres > Bayreuth Center of Ecology and Environmental Research- BayCEER
Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences
Research Institutions
Research Institutions > Research Centres
Result of work at the UBT: Yes
DDC Subjects: 500 Science
Date Deposited: 05 May 2015 12:10
Last Modified: 05 May 2015 12:10
URI: https://eref.uni-bayreuth.de/id/eprint/12752