Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Thioarsenate formation during oxidative dissolution of orpiment and arsenopyrite

Title data

Süß, Elke ; Planer-Friedrich, Britta:
Thioarsenate formation during oxidative dissolution of orpiment and arsenopyrite.
In: Chemosphere. Vol. 89 (2012) Issue 11 . - pp. 1390-1398.
ISSN 1879-1298
DOI: https://doi.org/10.1016/j.chemosphere.2012.05.109

Abstract in another language

Thioarsenates were previously determined as dominant species in geothermal and mineral waters with excess sulfide. Here, we used batch leaching experiments to determine their formation upon weathering or industrial leaching of the arsenic-sulfide minerals orpiment (As2S3) and arsenopyrite (FeAsS) under different pH and oxygen conditions. Under acidic conditions, as expected based on their known kinetic instability at low pH, no thioarsenates formed in either of the two mineral systems. Under neutral to alkaline conditions, orpiment dissolution yielded mono-, di- and trithioarsenate which accounted for up to 43–55% of total arsenic. Thioarsenate formation upon arsenopyrite dissolution was low at neutral (4%) but significant at alkaline pH, especially under suboxic to sulfidic conditions (20–43%, mainly as monothioarsenate). In contrast to orpiment, we postulate that recombination of arsenite and sulfide in solution is of minor importance for monothioarsenate formation during alkaline arsenopyrite dissolution. We propose instead that hydroxyl physisorption lead to formation of As-OH-S surface complexes by transposition of hydroxyl anions to arsenic or iron sites. Concurrently formed ironhydroxides could provide resorption sites for the freshly released monothioarsenate. However, sorption experiments with goethite showed slower sorption  kinetics of monothioarsenate compared to arsenite, but comparable with arsenate. The discovery that thioarsenates are released by natural weathering and industrial leaching processes and that, once they are released, have a higher mobility than the commonly-investigated species arsenite and arsenate requires future studies to consider them when assessing arsenic release in sulfidic natural or mining-impacted environments.

Further data

Item Type: Article in a journal
Refereed: Yes
Additional notes: BAYCEER92224
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Professorship Environmental Geochemistry Group
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Professorship Environmental Geochemistry Group > Professorship Environmental Geochemistry - Univ.-Prof. Dr. Britta Planer-Friedrich
Research Institutions > Research Centres > Bayreuth Center of Ecology and Environmental Research- BayCEER
Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences
Research Institutions
Research Institutions > Research Centres
Result of work at the UBT: Yes
DDC Subjects: 500 Science
Date Deposited: 05 May 2015 12:10
Last Modified: 10 Jan 2018 09:13
URI: https://eref.uni-bayreuth.de/id/eprint/12759