Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Formation and structural characterization of thioantimony species and their natural occurrence in geothermal waters

Title data

Planer-Friedrich, Britta ; Scheinost, Andreas C.:
Formation and structural characterization of thioantimony species and their natural occurrence in geothermal waters.
In: Environmental Science & Technology. Vol. 45 (2011) Issue 16 . - pp. 6855-6863.
ISSN 0013-936X
DOI: https://doi.org/10.1021/es201003k

Abstract in another language

Previously postulated from laboratory studies, the occurrence of antimony-sulfur species in geothermal waters could now be proven using anion-exchange chromatography inductively coupled plasma-mass spectrometry. The two thioantimony species detected by AEC-ICP-MS in oxic synthetic antimonite-sulfide solutions were assigned to tri- and tetrathioantimonate based on their S/Sb ratios and structural characterization by X-ray absorption spectroscopy (XAS). XAS confirmed that the initial species formed under anoxic conditions from antimonite at a 10-fold sulfide excess is trithioantimonite. Trithioantimonite rapidly transforms to tetrathioantimonate in the presence of oxygen or to antimonite at excess OH- versus SH- concentrations, and escapes chromatographic detection. In natural geothermal waters, up to 30% trithioantimonate and 9% tetrathioantimonate were detected. Their occurrence increased at increasingly alkaline pH and with increasing sulfide and decreasing oxygen concentrations. Considering the large sulfide excess (100 to 10 000-fold) the proportion of thioantimonates formed under natural conditions is lower than expected from synthetic solutions. Together with the observed high thioarsenate concentrations (>80%of total arsenic), this indicates that in direct competition with arsenic for a limited source of sulfide, thioantimonates form less spontaneously than thioarsenates. Interactions of arsenic and antimony with sulfur can therefore be decisive for similarities or differences in their environmental behavior.

Further data

Item Type: Article in a journal
Refereed: Yes
Additional notes: BAYCEER98863
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Professorship Environmental Geochemistry Group
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Professorship Environmental Geochemistry Group > Professorship Environmental Geochemistry - Univ.-Prof. Dr. Britta Planer-Friedrich
Research Institutions > Research Centres > Bayreuth Center of Ecology and Environmental Research- BayCEER
Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences
Research Institutions
Research Institutions > Research Centres
Result of work at the UBT: Yes
DDC Subjects: 500 Science
Date Deposited: 05 May 2015 12:10
Last Modified: 05 May 2015 12:10
URI: https://eref.uni-bayreuth.de/id/eprint/12784