Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Oxidative transformation of trithioarsenate along alkaline geothermal drainages : abiotic versus microbially mediated processes

Title data

Planer-Friedrich, Britta ; Fisher, Jenny C. ; Hollibaugh, James T. ; Süß, Elke ; Wallschläger, Dirk:
Oxidative transformation of trithioarsenate along alkaline geothermal drainages : abiotic versus microbially mediated processes.
In: Geomicrobiology Journal. Vol. 26 (2009) Issue 5 . - pp. 339-350.
ISSN 1521-0529
DOI: https://doi.org/10.1080/01490450902755364

Abstract in another language

Trithioarsenate is the predominant arsenic species at the source of alkaline, sulfidic geothermal springs in Yellowstone National Park. Kinetic studies along seven drainage channels showed that upon discharge the major initial reaction is rapid transformation to arsenite. When aerating a trithioarsenate solution in the laboratory, 10 to 20% of trithioarsenate dissociates abiotically before reaching a steady state with arsenite and thiosulfate. In the geothermal springs, trithioarsenate is completely converted to arsenite and rate constants of 0.2 to 1.9 min−1 are 40 to 500 times higher than in the laboratory, indicating microbial catalysis. Abiotic transformation of trithioarsenate to arsenate requires the presence of a strong oxidizing agent in the laboratory and no evidence was found for direct transformation of thioarsenates to arsenate in the geothermal drainage channels. The simultaneous increase of arsenite and arsenate observed upon trithioarsenate dissociation in some hot springs confirms that the main reactio is thioarsenate transformation to arsenite before microbially catalyzed oxidation to arsenate. In contrast to previous investigations in acidic hot springs, microbially catalyzed arsenate production in near-neutral to alkaline hot springs is not inhibited by the presence of sulfide. Phylogenetic analysis showed that arsenate production coincides with the temperature-dependent occurrence of organisms closely related to Thermocrinis ruber, a sulfur-oxidizing bacterium.

Further data

Item Type: Article in a journal
Refereed: Yes
Additional notes: BAYCEER80745
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Professorship Environmental Geochemistry Group
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Professorship Environmental Geochemistry Group > Professorship Environmental Geochemistry - Univ.-Prof. Dr. Britta Planer-Friedrich
Research Institutions > Research Centres > Bayreuth Center of Ecology and Environmental Research- BayCEER
Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences
Research Institutions
Research Institutions > Research Centres
Result of work at the UBT: Yes
DDC Subjects: 500 Science
Date Deposited: 05 May 2015 12:10
Last Modified: 05 May 2015 12:10
URI: https://eref.uni-bayreuth.de/id/eprint/12812