Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Disease status and population origin effects on floral scent : potential consequences for oviposition and fruit predation in a complex interaction between a plant, fungus, and noctuid moth

Title data

Dötterl, Stefan ; Jürgens, Andreas ; Wolfe, Lorne W. ; Biere, Arjen:
Disease status and population origin effects on floral scent : potential consequences for oviposition and fruit predation in a complex interaction between a plant, fungus, and noctuid moth.
In: Journal of Chemical Ecology. Vol. 35 (2009) Issue 3 . - pp. 307-319.
ISSN 1573-1561
DOI: https://doi.org/10.1007/s10886-009-9601-0

Abstract in another language

In the Silene latifolia–Hadena bicruris nursery pollination system, the Hadena moth is both pollinator and seed predator of its host plant. Floral scent, which differs among S. latifolia individuals and populations, is important for adult Hadena to locate its host. However, the success of moth larvae is strongly reduced if hosts are infected by the anther smut fungus Microbotryum violaceum, a pathogen that is transmitted by flower visitors. There were no qualitative differences between the scent of flowers from healthy and diseased plants. In addition, electroantennographic measurements showed that Hadena responded to the same subset of 19 compounds in samples collected from healthy and diseased plants. However, there were significant quantitative differences in scent profiles. Flowers from diseased plants emitted both a lower absolute amount of floral scent and had a different scent pattern, mainly due to their lower absolute amount of lilac aldehyde, whereas their amount of (E)-β-ocimene was similar to that in healthy flowers. Dual choice behavioral wind tunnel tests using differently scented flowers confirmed that moths respond to both qualitative and quantitative aspects of floral scent, suggesting that they could use differences in floral scent between healthy and infected plants to discriminate against diseased plants. Population mean fruit predation rates significantly increased with population mean levels of the emission rates of lilac aldehyde per flower, indicating that selection on floral scent compounds may not only be driven by effects on pollinator attraction but also by effects on fruit predation. However, variation in mean emission rates of scent compounds per flower generally could not explain the higher fruit predation in populations originating from the introduced North American range compared to populations native to Europe.

Further data

Item Type: Article in a journal
Refereed: Yes
Additional notes: BAYCEER67708
Institutions of the University: Research Institutions > Research Centres > Bayreuth Center of Ecology and Environmental Research- BayCEER
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Biology > Chair Plant Systematics
Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Biology
Research Institutions
Research Institutions > Research Centres
Result of work at the UBT: Yes
DDC Subjects: 500 Science
Date Deposited: 14 Jul 2015 06:21
Last Modified: 14 Jul 2015 06:21
URI: https://eref.uni-bayreuth.de/id/eprint/16297