Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

pH gradient-induced heterogeneity of Fe(III)-reducing microorganisms in coal mining-associated lake sediments

Title data

Blöthe, Marco ; Akob, Denise M. ; Kostka, Joel E. ; Göschel, Kathrin ; Drake, Harold L. ; Küsel, Kirsten:
pH gradient-induced heterogeneity of Fe(III)-reducing microorganisms in coal mining-associated lake sediments.
In: Applied and Environmental Microbiology. Vol. 74 (2008) Issue 4 . - pp. 1019-1029.
ISSN 1098-5336
DOI: https://doi.org/10.1128/AEM.01194-07

Abstract in another language

Lakes formed because of coal mining are characterized by low pH and high concentrations of Fe(II) and sulfate. The anoxic sediment is often separated into an upper acidic zone (pH 3; zone I) with large amounts of reactive iron and a deeper slightly acidic zone (pH 5.5; zone III) with smaller amounts of iron. In this study, the impact of pH on the Fe(III)-reducing activities in both of these sediment zones was investigated, and molecular analyses that elucidated the sediment microbial diversity were performed. Fe(II) was formed in zone I and III sediment microcosms at rates that were approximately 710 and 895 nmol cm_3 day_1, respectively. A shift to pH 5.3 conditions increased Fe(II) formation in zone I by a factor of 2. A shift to pH 3 conditions inhibited Fe(II) formation in zone III. Clone libraries revealed that the majority of the clones from both zones (approximately 44%) belonged to the Acidobacteria phylum. Since moderately acidophilic Acidobacteria species have the ability to oxidize Fe(II) and since Acidobacterium capsulatum reduced Fe oxides at pHs ranging from 2 to 5, this group appeared to be involved in the cycling of iron. PCR products specific for species related to Acidiphilium revealed that there were higher numbers of phylotypes related to cultured Acidiphilium or Acidisphaera species in zone III than in zone I. From the PCR products obtained for bioleaching-associated bacteria, only one phylotype with a level of similarity to Acidithiobacillus ferrooxidans of 99% was obtained. Using primer sets specific for Geobacteraceae, PCR products were obtained in higher DNA dilutions from zone III than from zone I. Phylogenetic analysis of clone libraries obtained from Fe(III)-reducing enrichment cultures grown at pH 5.5 revealed that the majority of clones were closely related to members of the Betaproteobacteria, primarily species of Thiomonas. Our results demonstrated that the upper acidic sediment was inhabited by acidophiles or moderate acidophiles which can also reduce Fe(III) under slightly acidic conditions. The majority of Fe(III) reducers inhabiting the slightly acidic sediment had only minor capacities to be active under acidic conditions.

Further data

Item Type: Article in a journal
Refereed: Yes
Additional notes: BAYCEER55896
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Biology > Chair Ecological Microbiology
Research Institutions > Research Centres > Bayreuth Center of Ecology and Environmental Research- BayCEER
Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Biology
Research Institutions
Research Institutions > Research Centres
Result of work at the UBT: Yes
DDC Subjects: 500 Science
Date Deposited: 29 Jul 2015 05:53
Last Modified: 29 Jul 2015 05:53
URI: https://eref.uni-bayreuth.de/id/eprint/17380