Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils : role in carbon cycling

Title data

Ekblad, A. ; Wallander, H. ; Godbold, Douglas L. ; Johnson, D. ; Baldrian, P. ; Björk, R. G. ; Cruz, C. ; Epron, D. ; Kjöller, R. ; Kieliszewska-Rokicka, B. ; Kraigher, H. ; Matzner, Egbert ; Neumann, Jonny ; Plassard, C.:
The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils : role in carbon cycling.
In: Plant and Soil. Vol. 366 (2013) Issue 1-2 . - pp. 1-27.
ISSN 1573-5036
DOI: https://doi.org/10.1007/s11104-013-1630-3

Abstract in another language

There is growing evidence of the importance of extramatrical mycelium (EMM) of mycorrhizalfungi in carbon (C) cycling in ecosystems. However, our understanding has until recently been mainly based on laboratory experiments, and knowledge of such basic parameters as variations inmycelial production, standing biomass and turnover as well as the regulatory mechanisms behind such variations in forest soils is limited. Presently, the productionof EMM by ectomycorrhizal (EM) fungi has been estimated at ~140 different forest sites to be up toseveral hundreds of kg per ha per year, but the published data are biased towards Picea abies inScandinavia. Little is known about the standing biomass and turnover of EMM in other systems, and itsinfluence on the C stored or lost from soils. Here, focussing on ectomycorrhizas, we discuss the factors that regulate the production and turnover of EMM andits role in soil C dynamics, identifying important gaps in this knowledge. C availability seems to be the key factor determining EMM production and possibly itsstanding biomass in forests but direct effects of mineral nutrient availability on the EMM can be important. There is great uncertainty about the rate ofturnover of EMM. There is increasing evidence that residues of EM fungi play a major role in the formation of stable N and C in SOM, which highlights the need to include mycorrhizal effects in models of global soil C stores.Keywords Decomposition, Exploration type, Extramatrical mycelium, In-growth bag, Minirhizotron, Soil organic matter, Rhizomorphs, Turnover rates

Further data

Item Type: Article in a journal
Refereed: Yes
Additional notes: BAYCEER94781
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Chair Soil Ecology
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Former Professors > Chair Soil Ecology - Univ.-Prof. Dr. Egbert Matzner
Research Institutions > Research Centres > Bayreuth Center of Ecology and Environmental Research- BayCEER
Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences
Research Institutions
Research Institutions > Research Centres
Result of work at the UBT: Yes
DDC Subjects: 500 Science
Date Deposited: 07 Aug 2015 06:59
Last Modified: 11 Jul 2018 09:13
URI: https://eref.uni-bayreuth.de/id/eprint/17647