Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Stabilization mechanisms of organic matter in four temperate soils : Development and application of a conceptional model

Title data

von Lützow, Margit ; Kögel-Knabner, Ingrid ; Ludwig, Bernard ; Matzner, Egbert ; Flessa, Heinz ; Ekschmitt, Klemens ; Guggenberger, Georg ; Marschner, Bernd ; Kalbitz, Karsten:
Stabilization mechanisms of organic matter in four temperate soils : Development and application of a conceptional model.
In: Journal of Plant Nutrition and Soil Science. Vol. 171 (2008) Issue 1 . - pp. 111-124.
ISSN 1436-8730
DOI: https://doi.org/10.1002/jpln.200700047

Abstract in another language

Based on recent findings in the literature, we developed a process-oriented conceptual model that integrates all three process groups of organic matter (OM) stabilization in soils namely (1) selective preservation of recalcitrant compounds, (2) spatial inaccessibility to decomposer organisms, and (3) interactions of OM with minerals and metal ions. The model concept relates the diverse stabilization mechanisms to active, intermediate, and passive pools. The formation of the passive pool is regarded as hierarchical structured co-action of various processes that are active under specific pedogenetic conditions.To evaluate the model, we used data of pool sizes and turnover times of soil OM fractions from horizons of two acid forest and two agricultural soils. Selective preservation of recalcitrant compounds is relevant in the active pool and particularly in soil horizons with high C contents. Biogenic aggregation preserves OM in the intermediate pool and is limited to topsoil horizons. Spatial inaccessibility due to the occlusion of OM in clay microstructures and due to the formation of hydrophobic surfaces stabilizes OM in the passive pool. If present, charcoal contributes to the passive pool mainly in topsoil horizons. The importance of organo-mineral interactions for OM stabilization in the passive pool is well-known and increases with soil depth. Hydrophobicity is particularly relevant in acid soils and in soils with considerable inputs of charcoal. We conclude that the stabilization potentials of soils are site- and horizon-specific. Furthermore, management affects key stabilization mechanisms. Tillage increases the importance of organo-mineral interactions for OM stabilization, and in Ap horizons with high microbial activity and C turnover, organo-mineral interactions can contribute to OM stabilization in the intermediate pool. The application of our model showed that we need a better understanding of processes causing spatial inaccessibility of OM to decomposers in the passive pool.

Further data

Item Type: Article in a journal
Refereed: Yes
Additional notes: BAYCEER48820
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Chair Soil Ecology
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Former Professors > Chair Soil Ecology - Univ.-Prof. Dr. Egbert Matzner
Research Institutions > Research Centres > Bayreuth Center of Ecology and Environmental Research- BayCEER
Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences
Research Institutions
Research Institutions > Research Centres
Result of work at the UBT: Yes
DDC Subjects: 500 Science
Date Deposited: 11 Sep 2015 06:33
Last Modified: 11 Sep 2015 06:33
URI: https://eref.uni-bayreuth.de/id/eprint/19110