Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Chemical composition of apoplastic transport barriers in relation to radial hydraulic conductivity of corn roots (Zea mays L.)

Title data

Zimmermann, Hilde Monika ; Hartmann, Klaus ; Schreiber, Lukas ; Steudle, Ernst:
Chemical composition of apoplastic transport barriers in relation to radial hydraulic conductivity of corn roots (Zea mays L.).
In: Planta. Vol. 210 (2000) Issue 2 . - pp. 302-311.
ISSN 0032-0935
DOI: https://doi.org/10.1007/PL00008138

Abstract in another language

The hydraulic conductivity of roots (Lp(r)) of 6- to 8-d-old maize seedlings has been related to the chemical composition of apoplastic transport barriers in the endodermis and hypodermis (exodermis), and to the hydraulic conductivity of root cortical cells. Roots were cultivated in two different ways. When grown in aeroponic culture, they developed an exodermis (Casparian band in the hypodermal layer), which was missing in roots from hydroponics. The development of Casparian bands and suberin lamellae was observed by staining with berberin-aniline-blue and Sudan-III. The compositions of suberin and lignin were analyzed quantitatively and qualitatively after depolymerization (BF3/methanol-transesterification. thioacidolysis) using gas chromatography/mass spectrometry. Root Lp(r) was measured using the root pressure probe. and the hydraulic conductivity of cortical cells (Lp) using the cell pressure probe. Roots from the two cultivation methods differed significantly in (i) the Lp(r) evaluated from hydrostatic relaxations (factor of 1.5), and (ii) the amounts of lignin and aliphatic suberin in the hypodermal layer of the apical root zone. Aliphatic suberin is thought to be the major reason for the hydrophobic properties of apoplastic barriers and for their relatively low permeability to water. No differences were found in the amounts of suberin in the hypodermal layers of basal root zones and in the endodermal laver. In order to verify that changes in root Lp(r) were not caused by changes in hydraulic conductivity at the membrane level, cell Lp was measured as well. No differences were found in the Lp values of cells from roots cultivated by the two different methods. It was concluded that changes in the hydraulic conductivity of the apoplastic rather than of the cell-to-cell path were causing the observed changes in root Lp(r).

Further data

Item Type: Article in a journal
Refereed: Yes
Additional notes: BAYCEER33635
Institutions of the University: Research Institutions > Research Centres > Bayreuth Center of Ecology and Environmental Research- BayCEER
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Biology > Chair Plant Ecology
Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Biology
Research Institutions
Research Institutions > Research Centres
Result of work at the UBT: Yes
DDC Subjects: 500 Science
Date Deposited: 24 Sep 2015 09:38
Last Modified: 24 Sep 2015 09:38
URI: https://eref.uni-bayreuth.de/id/eprint/19687