Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Drying and wetting effects on carbon dioxide release from organic horizons

Title data

Borken, Werner ; Davidson, Eric A. ; Savage, Kathleen ; Gaudinski, Julia B. ; Trumbore, Susan E.:
Drying and wetting effects on carbon dioxide release from organic horizons.
In: Soil Science Society of America Journal. Vol. 67 (2003) Issue 6 . - pp. 1888-1896.
ISSN 0361-5995
DOI: https://doi.org/10.2136/sssaj2003.1888

Abstract in another language

Drying and wetting cycles of O horizon in forest soils have not received much attention, partly due to methodological limitations for nondestructive monitoring of the O horizon water content. The objective of this study was to determine the importance of moisture limitations in the O horizon of a temperate forest on summertime soil respiration. We measured soil respiration in three replicated plots in a mixed deciduous forest at Harvard Forest, Massachusetts, weekly from May to October 2001. Direct Current (DC) half-bridge sensors that had been calibrated using destructive samples of the Oi and Oe/Oa horizons were placed in the Oi and Oe/Oa horizons to record hourly changes of gravimetric water contents. Soil temperature explained 47% of the variation in soil respiration using the Arrhenius equation. The residuals of the temperature model were linearly correlated with gravimetric water content of the Oi horizon (r2 = 0.72, P < 0.0001) and Oe/Oa horizon (r2 = 0.56, P < 0.001), indicating that temporal variation in soil respiration can be partly explained by water content of the O horizon. Additionally, a laboratory study was performed to evaluate drying/wetting cycles of the O horizon at constant temperature. Even small simulated rainfall amounts of 0.5 mm significantly increase CO2 flux from dry O horizon within a few minutes. The duration of CO2 pulses increased with the amount of applied water, lasting from a few hours to days. A strong correlation between CO2 release and water content of the O horizons demonstrates a clear regulatory role of litter water content on decomposition within the O horizons. Abbreviations: DC, direct current • IRGA, infrared gas analyzer • SOC, soil organic carbon • TDR, Time domain reflectometry

Further data

Item Type: Article in a journal
Refereed: Yes
Additional notes: BAYCEER14110
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Chair Soil Ecology
Research Institutions > Research Centres > Bayreuth Center of Ecology and Environmental Research- BayCEER
Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences
Research Institutions
Research Institutions > Research Centres
Result of work at the UBT: Yes
DDC Subjects: 500 Science
Date Deposited: 09 Oct 2015 05:56
Last Modified: 09 Oct 2015 05:56
URI: https://eref.uni-bayreuth.de/id/eprint/20243