Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

The maximum-entropy method in superspace

Titelangaben

van Smaalen, Sander ; Palatinus, Lukas ; Schneider, Martin:
The maximum-entropy method in superspace.
In: Acta Crystallographica Section A. Bd. 59 (2003) Heft 5 . - S. 459-469.
ISSN 1600-5724
DOI: https://doi.org/10.1107/S010876730301434X

Volltext

Link zum Volltext (externe URL): Volltext

Abstract

One of the applications of the maximum-entropy method (MEM) in crystallography is the reconstruction of the electron density from phased structure factors. Here the application of the MEM to incommensurately modulated crystals and incommensurate composite crystals is considered. The MEM is computed directly in superspace, where the electron density in the (3+\it d)-dimensional unit cell (\it d>0) is determined from the scattering data of aperiodic crystals. Periodic crystals (\it d=0) are treated as a special case of the general formalism. The use of symmetry in the MEM is discussed and an efficient algorithm is proposed for handling crystal symmetry. The method has been implemented into a computer program \it BayMEM and applications are presented to the electron density of the periodic crystal NaV\sb 2O\sb 5 and the electron density of the incommensurate composite crystal (LaS)\sb 1.14NbS\sb 2. The MEM in superspace is shown to provide a model-independent estimate of the shapes of the modulation functions of incommensurate crystals. The discrete character of the electron density is found to be the major source of error, limiting the accuracy of the reconstructed modulation functions to approximately 10 of the sizes of the pixels. MaxEnt optimization using the Cambridge and Sakata—Sato algorithms are compared. The Cambridge algorithm is found to perform better than the Sakata—Sato algorithm, being faster, always reaching convergence, and leading to more reliable density maps. Nevertheless, the Sakata—Sato algorithm leads to similar density maps, even in cases where it does not reach complete convergence.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: maximum-entropy method; aperiodic crystals; electron density
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Fachgruppe Materialwissenschaften > Lehrstuhl Kristallographie
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Fachgruppe Materialwissenschaften > Lehrstuhl Kristallographie > Lehrstuhl Kristallographie - Univ.-Prof. Dr. Sander van Smaalen
Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Fachgruppe Materialwissenschaften
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 530 Physik
Eingestellt am: 17 Mär 2016 07:55
Letzte Änderung: 17 Mär 2016 07:55
URI: https://eref.uni-bayreuth.de/id/eprint/31880