Titlebar

Bibliografische Daten exportieren
Literatur vom gleichen Autor
plus auf ERef Bayreuth
plus bei Google Scholar

 

On putative q-analogues of the Fano plane and related combinatorial structures

Titelangaben

Honold, Thomas ; Kiermaier, Michael:
On putative q-analogues of the Fano plane and related combinatorial structures.
In: Hagen, Thomas ; Rupp, Florian ; Scheurle, Jürgen (Hrsg.): Dynamical Systems, Number Theory and Applications : A Festschrift in Honor of Armin Leutbecher’s 80th Birthday. - New Jersey; London; Singapore; Beijing; Shanghai; Hong Kong; Taipei; Chennai; Tokyo : World Scientific , 2016 . - S. 141-175
ISBN 978-981-4699-86-0
DOI: 10.1142/9789814699877_0008

Abstract

A set ℱq of 3-dimensional subspaces of GF(q)^7, the 7-dimensional vector space over the finite field GF(q), is said to form a q-analogue of the Fano plane if every 2-dimensional subspace of is contained in precisely one member of ℱq. The existence problem for such q-analogues remains unsolved for every single value of q. Here we report on an attempt to construct such q-analogues using ideas from the theory of subspace codes, which were introduced a few years ago by Koetter and Kschischang in their seminal work on error-correction for network coding. Our attempt eventually fails, but it produces the largest subspace codes known so far with the same parameters as a putative q-analogue. In particular we find a ternary subspace code of new record size 6977, and we are able to construct a binary subspace code of the largest currently known size 329 in an entirely computer-free manner.

Weitere Angaben

Publikationsform: Aufsatz in einem Buch
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik II (Computeralgebra)
Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 510 Mathematik
Eingestellt am: 11 Apr 2016 07:07
Letzte Änderung: 11 Apr 2016 07:07
URI: https://eref.uni-bayreuth.de/id/eprint/32156