Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Biomass production and nitrate metabolism of Atriplex hortensis L. (C3 plant) and Amaranthus retroflexus L. (C4 plant) in cultures at different levels of nitrogen supply

Title data

Gebauer, Gerhard ; Schuhmacher, M. I. ; Krstić, B. ; Rehder, H. ; Ziegler, H.:
Biomass production and nitrate metabolism of Atriplex hortensis L. (C3 plant) and Amaranthus retroflexus L. (C4 plant) in cultures at different levels of nitrogen supply.
In: Oecologia. Vol. 72 (1987) Issue 2 . - pp. 303-314.
ISSN 1432-1939
DOI: https://doi.org/10.1007/BF00379283

Abstract in another language

Pure and mixed cultures of the dicotyledons Atriplex hortensis L. (C3 plant) and Amaranthus retroflexus L. (C4 plant) were maintained under open air conditions in standard soil at low and high nitrogen supply levels.A comparison of shoot dry weight and shoot length in the various series shows that the growth of the aboveground parts of both species was severely reduced under low N conditions. In both pure and mixed cultures the differences resulting from low N vs. high N conditions was less pronounced with Atriplex (C3 plant) than with Amaranthus (C4 plant). The root dry weight of the two species was not reduced so much under low N conditions as was the shoot dry weight. The low N plants were found to contain a larger proportion of their biomass in the roots than did the high N plants. In general the root proportion of Atriplex was greater than that of Amaranthus. The contents of organic nitrogen and nitrate and the nitrate reductase activity (NRA) per g dry weight of both species decreased continually throughout the experiments. With the exception of young plants, the low N plants always had tower contents of organic nitrogen and nitrate and nitrate reductase activities than did the high N plants. The highest values of NRA were measured in the leaf laminae. The eaves also exhibited the highest concentrations of organic nitrogen. The highest nitrate concentrations, however, were observed in the shoot axis, and in most cases the lowest nitrate values were found in the laminae. At the end of ne growing season this pattern was found to have been reversed with Atriplex, but not with Amaranthus. Thus Atriplex was able to maintain a higher NRA in the laminae than Amaranthus under low N conditions.The transpiration per leaf area of the C4 plant Amaranthus during the course of a day was substantially lower than that of the C3 plant Atriplex. There were no significant differences in transpiration between the low N and high N series of Amaranthus. The low N plants of Atriplex, however, clearly showed in most cases higher transpiration rates than the corresponding high N plants. These different transpiration rates of the high N and the low N Atriplex plants were also reflected in a distinct 13C discrimination.The sum of these results points to the conclusion that the C3 plant Atriplex hortensis can maintain a better internal inorganic nitrogen supply than the C4 plant Amaranthus retroflexus under low N conditions and an ample water supply, due to the larger root proportion and the more pronounced and flexible transpiration of the C3 plant.

Further data

Item Type: Article in a journal
Refereed: Yes
Additional notes: BAYCEER25944
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Biology > Chair Plant Ecology
Research Institutions > Research Centres > Bayreuth Center of Ecology and Environmental Research- BayCEER
Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Biology
Research Institutions
Research Institutions > Research Centres
Result of work at the UBT: Yes
DDC Subjects: 500 Science
Date Deposited: 15 Apr 2016 07:09
Last Modified: 15 Apr 2016 07:09
URI: https://eref.uni-bayreuth.de/id/eprint/32186