Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Economic model predictive control without terminal constraints for optimal periodic behavior

Title data

Müller, Matthias A. ; Grüne, Lars:
Economic model predictive control without terminal constraints for optimal periodic behavior.
In: Automatica. Vol. 70 (August 2016) . - pp. 128-139.
ISSN 0005-1098
DOI: https://doi.org/10.1016/j.automatica.2016.03.024

This is the latest version of this item.

Project information

Project title:
Project's official titleProject's id
DFG-Project "Performance Analysis for Distributed and Multiobjective Model Predictive Control"GR1569/13-1

Project financing: Deutsche Forschungsgemeinschaft

Abstract in another language

In this paper, we analyze economic model predictive control schemes without terminal constraints, where the optimal operating regime is not steady-state operation, but periodic behavior. We first show by means of two counterexamples, that a classical receding horizon control scheme does not necessarily result in an optimal closed-loop behavior. Instead, a multi-step MPC scheme may be needed in order to establish near optimal performance of the closed-loop system. This behavior is analyzed in detail, and we show that under suitable dissipativity and controllability conditions, desired closed-loop performance guarantees as well as convergence to the optimal periodic orbit can be established.

Further data

Item Type: Article in a journal
Refereed: Yes
Keywords: Economic model predictive control; Optimal periodic operation; Nonlinear systems
Institutions of the University: Faculties > Faculty of Mathematics, Physics und Computer Science
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics > Chair Mathematics V (Applied Mathematics) > Chair Mathematics V (Applied Mathematics) - Univ.-Prof. Dr. Lars Grüne)
Profile Fields > Advanced Fields
Profile Fields > Advanced Fields > Nonlinear Dynamics
Faculties
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics > Chair Mathematics V (Applied Mathematics)
Profile Fields
Result of work at the UBT: Yes
DDC Subjects: 500 Science > 510 Mathematics
Date Deposited: 02 Jun 2016 07:09
Last Modified: 02 Jun 2016 07:09
URI: https://eref.uni-bayreuth.de/id/eprint/32506

Available Versions of this Item