Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Submicron-Scale Heterogeneities in Nickel Sorption of Various Cell–Mineral Aggregates Formed by Fe(II)-Oxidizing Bacteria

Title data

Schmid, Gregor ; Zeitvogel, Fabian ; Hao, Likai ; Adaktylou, Irini J. ; Eickhoff, Merle ; Obst, Martin:
Submicron-Scale Heterogeneities in Nickel Sorption of Various Cell–Mineral Aggregates Formed by Fe(II)-Oxidizing Bacteria.
In: Environmental Science & Technology. Vol. 50 (2016) Issue 1 . - pp. 114-125.
ISSN 0013-936X
DOI: https://doi.org/10.1021/acs.est.5b02955

Abstract in another language

Fe(II)-oxidizing bacteria form biogenic cell–mineral aggregates (CMAs) composed of microbial cells, extracellular organic compounds, and ferric iron minerals. CMAs are capable of immobilizing large quantities of heavy metals, such as nickel, via sorption processes. CMAs play an important role for the fate of heavy metals in the environment, particularly in systems characterized by elevated concentrations of dissolved metals, such as mine drainage or contaminated sediments. We applied scanning transmission (soft) X-ray microscopy (STXM) spectrotomography for detailed 3D chemical mapping of nickel sorbed to CMAs on the submicron scale. We analyzed different CMAs produced by phototrophic or nitrate-reducing microbial Fe(II) oxidation and, in addition, a twisted stalk structure obtained from an environmental biofilm. Nickel showed a heterogeneous distribution and was found to be preferentially sorbed to biogenically precipitated iron minerals such as Fe(III)-(oxyhydr)oxides and, to a minor extent, associated with organic compounds. Some distinct nickel accumulations were identified on the surfaces of CMAs. Additional information obtained from scatter plots and angular distance maps, showing variations in the nickel–iron and nickel–organic carbon ratios, also revealed a general correlation between nickel and iron. Although a high correlation between nickel and iron was observed in 2D maps, 3D maps revealed this to be partly due to projection artifacts. In summary, by combining different approaches for data analysis, we unambiguously showed the heterogeneous sorption behavior of nickel to CMAs.

Further data

Item Type: Article in a journal
Refereed: Yes
Additional notes: BAYCEER135326
Institutions of the University: Research Institutions
Research Institutions > Research Centres
Research Institutions > Research Centres > Bayreuth Center of Ecology and Environmental Research- BayCEER
Result of work at the UBT: Yes
DDC Subjects: 500 Science
Date Deposited: 12 Aug 2016 10:59
Last Modified: 12 Aug 2016 10:59
URI: https://eref.uni-bayreuth.de/id/eprint/33927