Bibliografische Daten exportieren
Literatur vom gleichen Autor
plus auf ERef Bayreuth
plus bei Google Scholar


Mechanical Testing of Engineered Spider Silk Filaments Provides Insights into Molecular Features on a Mesoscale


Lang, Gregor ; Neugirg, Benedikt R. ; Kluge, Daniel ; Fery, Andreas ; Scheibel, Thomas:
Mechanical Testing of Engineered Spider Silk Filaments Provides Insights into Molecular Features on a Mesoscale.
In: ACS Applied Materials & Interfaces. Bd. 9 (2017) Heft 1 . - S. 892-900.
ISSN 1944-8252
DOI: 10.1021/acsami.6b13093


Spider dragline silk shows the highest toughness in comparison to all other known natural or man-made fibers. Despite a broad experimental foundation concerning the macroscopic silk thread properties as well as a thorough simulation-based molecular understanding, the impact of the mesoscale building blocks, namely nano-/submicrometer-sized filaments, on the mechanical properties of the threads remains the missing link. Here, we illustrate the function of these mesoscaled building blocks using electrospun fibers made of a recombinant spider silk protein and show the impact of β-sheet content and fiber hydration on their mechanical performance. Specifically elucidating the interplay between β-sheet-cross-linking (fiber strength) and structural water (fiber extensibility), the results bridge the gap between the molecular and the macroscopic view on the mechanics of spider silk. It is demonstrated that the extensibility of the here used single (MaSp2-like) protein system is in good accordance with the simulated extensibilities published by other groups. Furthermore, sufficient hydration of the fibers is shown to be a prerequisite to obtain a toughness in the range of that of
natural dragline silk. Preliminary studies on electrospun fibers of the MaSp2-based recombinant spider silk proteins used in this work have indicated their basic applicability in the technical field of filter systems as well as in regenerative medicine. The presented work provides a fundamental understanding of the mechanical performance of such fibers under different wetting conditions, a prerequisite to further specify their potential for such applications.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: recombinant spider silk; electrospinning; AFM; mechanics; nanofibers
Institutionen der Universität: Fakultäten
Fakultäten > Fakultät für Ingenieurwissenschaften
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Biomaterialien
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Biomaterialien > Lehrstuhl Biomaterialien - Univ.-Prof. Dr. Thomas Scheibel
Profilfelder > Advanced Fields
Profilfelder > Advanced Fields > Polymer- und Kolloidforschung
Profilfelder > Advanced Fields > Neue Materialien
Profilfelder > Advanced Fields > Molekulare Biowissenschaften
Profilfelder > Emerging Fields
Profilfelder > Emerging Fields > Lebensmittel- und Gesundheitswissenschaften
Forschungseinrichtungen > Forschungszentren
Forschungseinrichtungen > Forschungszentren > Bayreuther Materialzentrum - BayMAT
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 600 Technik, Medizin, angewandte Wissenschaften
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Eingestellt am: 13 Jan 2017 10:49
Letzte Änderung: 13 Jan 2017 10:49
URI: https://eref.uni-bayreuth.de/id/eprint/35672