Bibliografische Daten exportieren
Literatur vom gleichen Autor
plus auf ERef Bayreuth
plus bei Google Scholar


Optimization-based subdivision algorithm for reachable sets


Riedl, Wolfgang ; Baier, Robert ; Gerdts, Matthias:
Optimization-based subdivision algorithm for reachable sets.
Mathematisches Institut, Universität Bayreuth; Institut für Mathematik und Rechneranwendung, Universität der Bundeswehr in Neubiberg/München
Bayreuth , 2016 . - 33 S.


Link zum Volltext (externe URL): Volltext

Angaben zu Projekten

Offizieller ProjekttitelProjekt-ID
European Union's Seventh Framework Programme338508

Projektfinanzierung: Andere


Reachable sets for nonlinear control systems can be computed via the use of solvers for optimal control problems. The paper presents a new improved variant which applies adaptive concepts similar to the framework of known subdivision techniques by Dellnitz/Hohmann. Using set properties of the nearest point projection, the convergence and rigorousness of the algorithm can be proved without the assumption of diffeomorphism on a nonlinear mapping. The adaptive method is demonstrated by two nonlinear academic examples and for a more complex robot model with box constraints for four states, two controls and five boundary conditions. In these examples adaptive and non-adaptive techniques as well as various discretization methods and optimization solvers are compared. The method also offers interesting features, like zooming into details of the reachable set, self-determination of the needed bounding box, easy parallelization and the use of different grid geometries. With the calculation of a 3d funnel in one of the examples, it is shown that the algorithm can also be used to approximate higher dimensional reachable sets and the resulting box collection may serve as a starting point for more sophisticated visualizations or algorithms.

Weitere Angaben

Publikationsform: Preprint, Postprint, Working paper, Diskussionspapier
Zusätzliche Informationen: Contents:
1. Introduction and preliminaries
2. Grid construction via subdivision
3. Implementation
4. Numerical examples
5. Advantages of the algorithm
5.1 Transformed grids
5.2 Zooming
5.3 Determination of a bounding box
5.4 Parallelization
5.5 Solution funnel in 3d
6. Conclusions
Keywords: reachable sets; subdivision; optimal control; direct discretization; nonlinear
systems; nonlinear optimization
Fachklassifikationen: Mathematics Subject Classification Code: 93B03 49M37 (49M25 49J53 93C10)
Institutionen der Universität: Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik)
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Wissenschaftliches Rechnen
Profilfelder > Advanced Fields
Profilfelder > Advanced Fields > Nichtlineare Dynamik
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 510 Mathematik
Eingestellt am: 04 Feb 2017 22:00
Letzte Änderung: 04 Feb 2017 22:00
URI: https://eref.uni-bayreuth.de/id/eprint/35948