Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Electronic coherences and vibrational wave-packets in single molecules studied with femtosecond phase-controlled spectroscopy

Title data

Hildner, Richard ; Brinks, Daan ; Stefani, Fernando D. ; van Hulst, Niek F.:
Electronic coherences and vibrational wave-packets in single molecules studied with femtosecond phase-controlled spectroscopy.
In: Physical Chemistry Chemical Physics. Vol. 13 (2011) . - pp. 1888-1894.
ISSN 1463-9084
DOI: https://doi.org/10.1039/C0CP02231D

Abstract in another language

Employing femtosecond pulse-shaping techniques we investigate ultrafast, coherent and incoherent dynamics in single molecules at room temperature. In first experiments single molecules are excited into their purely electronic 0-0 transition by phase-locked double-pulse sequences with pulse durations of 75 fs and 20 nm spectral band width. Their femtosecond kinetics can then be understood in terms of a 2-level system and modelled with the optical Bloch equations. We find that we observe the coherence decay in single molecules, and the purely electronic dephasing times can be retrieved directly in the time domain. In addition, the Rabi-frequencies and thus the transition dipole moments of single molecules are determined from these data. Upon excitation of single molecules into a vibrational level of the electronically excited state also incoherent intra-molecular vibrational relaxation is recorded. Increasing the spectral band width of the excitation pulses to up to 120 nm (resulting in a transform-limited pulse width of 15 fs) coherent superpositions of excited state vibrational modes, i.e. vibrational wave packets, are excited. The wave-packet oscillations in the excited state potential energy surface are followed in time by a phase-controlled pump-probe scheme, which permits to record wave packet interference, and to determine the energies of vibrational modes and their coupling strengths to the electronic transition.

Further data

Item Type: Article in a journal
Refereed: Yes
Keywords: Bloch equations; Rabi oscillation; absorption cross section; coherent state preparation; density matrix; optical free induction decay; single molecule; time resolved spectroscopy; vibrational relaxation; wave packet
Institutions of the University: Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics > Lehrstuhl Experimentalphysik IX - Spektroskopie weicher Materie
Faculties
Faculties > Faculty of Mathematics, Physics und Computer Science
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics
Result of work at the UBT: No
DDC Subjects: 500 Science > 530 Physics
Date Deposited: 28 Apr 2017 09:04
Last Modified: 28 Apr 2017 09:04
URI: https://eref.uni-bayreuth.de/id/eprint/36886