Titlebar

Bibliografische Daten exportieren
Literatur vom gleichen Autor
plus auf ERef Bayreuth
plus bei Google Scholar

 

Canonical heights on genus-2 Jacobians

Titelangaben

Müller, Jan Steffen ; Stoll, Michael:
Canonical heights on genus-2 Jacobians.
In: Algebra & Number Theory. Bd. 10 (2016) Heft 10 . - S. 2153-2234.
ISSN 1937-0652
DOI: 10.2140/ant.2016.10.2153

Abstract

Let K be a number field and let C∕K be a curve of genus 2 with Jacobian variety J. We study the canonical height ĥ: J(K) → ℝ. More specifically, we consider the following two problems, which are important in applications:

1. for a given P ∈ J(K), compute ĥ(P) efficiently;
2. for a given bound B > 0, find all P ∈ J(K) with ĥ(P) ≤ B.

We develop an algorithm running in polynomial time (and fast in practice) to deal with the first problem. Regarding the second problem, we show how one can tweak the naive height h that is usually used to obtain significantly improved bounds for the difference h − ĥ, which allows a much faster enumeration of the desired set of points.

Our approach is to use the standard decomposition of h(P) − ĥ(P) as a sum of local “height correction functions”. We study these functions carefully, which leads to efficient ways of computing them and to essentially optimal bounds. To get our polynomial-time algorithm, we have to avoid the factorization step needed to find the finite set of places where the correction might be nonzero. The main innovation is to replace factorization into primes by factorization into coprimes.

Most of our results are valid for more general fields with a set of absolute values satisfying the product formula.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: canonical height; hyperelliptic curve; curve of genus 2; Jacobian surface; Kummer surface
Fachklassifikationen: Mathematics Subject Classification Code: 11G50 (11G30 11G10 14G40 14Q05 14G05)
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik II (Computeralgebra)
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik II (Computeralgebra) > Lehrstuhl Mathematik II (Computeralgebra) - Univ.-Prof. Dr. Michael Stoll
Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 510 Mathematik
Eingestellt am: 04 Mai 2017 09:07
Letzte Änderung: 04 Mai 2017 09:07
URI: https://eref.uni-bayreuth.de/id/eprint/36941