Titlebar

Bibliografische Daten exportieren
Literatur vom gleichen Autor
plus auf ERef Bayreuth
plus bei Google Scholar

 

BILP-19—An Ultramicroporous Organic Network with Exceptional Carbon Dioxide Uptake

Titelangaben

Klumpen, Christoph ; Radakovitsch, Florian ; Jess, Andreas ; Senker, Jürgen:
BILP-19—An Ultramicroporous Organic Network with Exceptional Carbon Dioxide Uptake.
In: Molecules. Bd. 8 (August 2017) Heft 22 . - Nr. 1343. - 11 S..
ISSN 1420-3049
DOI: 10.3390/molecules22081343

Volltext

Link zum Volltext (externe URL): Volltext

Abstract

Porous benzimidazole-based polymers (BILPs) have proven to be promising for carbon dioxide capture and storage. The polarity of their chemical structure in combination with an inherent porosity allows for adsorbing large amounts of carbon dioxide in combination with high selectivities over unpolar guest molecules such as methane and nitrogen. For this reason, among purely organic polymers, BILPs contain some of the most effective networks to date. Nevertheless, they are still outperformed by competitive materials such as metal-organic frameworks (MOFs) or metal doped porous polymers. Here, we report the synthesis of BILP-19 and its exceptional carbon dioxide uptake of up to 6 mmol•g⁻¹ at 273 K, making the network comparable to state-of-the-art materials. BILP-19 precipitates in a particulate structure with a strongly anisotropic growth into platelets, indicating a sheet-like structure for the network. It exhibits only a small microporous but a remarkable ultra-microporous surface area of 144 m²•g⁻¹ and 1325 m²•g⁻¹, respectively. We attribute the exceptional uptake of small guest molecules such as carbon dioxide and water to the distinct ultra-microporosity. Additionally, a pronounced hysteresis for both guests is observed, which in combination with the platelet character is probably caused by an expansion of the interparticle space, creating additional accessible ultra-microporous pore volume. For nitrogen and methane, this effect does not occur which explains their low affinity. In consequence, Henry selectivities of 123 for CO₂/N₂ at 298 K and 12 for CO₂/CH₄ at 273 K were determined. The network was carefully characterized with solid-state nuclear magnetic resonance (NMR) and infrared (IR) spectroscopy, thermal gravimetry (TG) and elemental analyses as well as physisorption experiments with Ar, N₂, CO₂, CH₄ and water.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: water vapor sorption
Institutionen der Universität: Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Anorganische Chemie III
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Anorganische Chemie III > Lehrstuhl Anorganische Chemie III - Univ.-Prof. Dr. Jürgen Senker
Fakultäten > Fakultät für Ingenieurwissenschaften
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Chemische Verfahrenstechnik
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Chemische Verfahrenstechnik > Lehrstuhl Chemische Verfahrenstechnik - Univ.-Prof. Dr.-Ing. Andreas Jess
Fakultäten
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 540 Chemie
600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
600 Technik, Medizin, angewandte Wissenschaften > 660 Chemische Verfahrenstechnik
Eingestellt am: 17 Aug 2017 06:46
Letzte Änderung: 17 Aug 2017 06:46
URI: https://eref.uni-bayreuth.de/id/eprint/39137