Titlebar

Bibliografische Daten exportieren
Literatur vom gleichen Autor
plus auf ERef Bayreuth
plus bei Google Scholar

 

Computational methods in subspace designs

Titelangaben

Braun, Michael ; Kiermaier, Michael ; Wassermann, Alfred:
Computational methods in subspace designs.
In: Greferath, Marcus ; Pavčević, Mario Osvin ; Natalia, Silberstein ; María Ángeles, Vázquez-Castro (Hrsg.): Network Coding and Subspace Designs. - Cham : Springer , 2018 . - S. 213-244 . - (Signals and Communication Theory )
ISBN 978-3-319-70293-3
DOI: https://doi.org/10.1007/978-3-319-70293-3_9

Angaben zu Projekten

Projekttitel:
Offizieller ProjekttitelProjekt-ID
Random Network Coding and Designs over GF(q)IC1104

Projektfinanzierung: COST – European Cooperation in Science and Technology

Abstract

Subspace designs are the q-analogs of combinatorial designs. Introduced in the 1970s, these structures gained a lot of interest recently because of their application to random network coding. Compared to combinatorial designs, the number of blocks of subspace designs are huge even for the smallest instances. Thus, for a computational approach, sophisticated algorithms are indispensible. This chapter highlights computational methods for the construction of subspace designs, in particular methods based on group theory. Starting from tactical decompositions we present the method of Kramer and Mesner which allows to restrict the search for subspace designs to those with a prescribed group of automorphisms. This approach reduces the construction problem to the problem of solving a Diophantine linear system of equations. With slight modifications it can also be used to construct large sets of subspace designs. After a successful search, it is natural to ask if subspace designs are isomorphic. We give several helpful tools which allow to give answers in surprisingly many situations, sometimes in a purely theoretical way. Finally, we will give an overview of algorithms which are suitable to solve the underlying Diophantine linear system of equations. As a companion to chapter “q-Analogs of Designs: Subspace Designs” this chapter provides an extensive list of groups which were used to construct subspace designs and large sets of subspace designs.

Weitere Angaben

Publikationsform: Aufsatz in einem Buch
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik II (Computeralgebra)
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik und ihre Didaktik
Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 510 Mathematik
Eingestellt am: 21 Jun 2018 05:40
Letzte Änderung: 21 Jun 2018 05:40
URI: https://eref.uni-bayreuth.de/id/eprint/44595