Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Synthesis and characterization of the human CC chemokineHCC-2

Title data

Escher, Sylvia E. ; Sticht, Heinrich ; Forssmann, Wolf-Georg ; Rösch, Paul ; Adermann, Knut:
Synthesis and characterization of the human CC chemokineHCC-2.
In: The Journal of Peptide Research. Vol. 54 (December 1999) Issue 6 . - pp. 505-513.
ISSN 1747-0285
DOI: https://doi.org/10.1034/j.1399-3011.1999.00125.x

Abstract in another language

Human CC chemokine 2 (HCC-2) is a novel member of the chemokine peptide family that induces chemotaxis of monocytes, T lymphocytes and eosinophils via activation of the CCR-1 and CCR-3 receptors. Fmoc chemistry was optimized and used to synthesize the biologically active 66-residue peptide HCC-2-(48-113). Introduction of the three disulfide bonds was achieved by oxidative folding in the presence of the redox system cysteine/cystine. Alternatively, a semiselective approach utilizing a mixed Acm/Trt protection scheme for disulfide formation was applied. It was found that, without participation of the two HCC-2-specific cysteine residues in positions 64 and 104, the two typical chemokine disulfides are formed predominantly during oxidative folding. In addition, the mutant [Ala64,104]HCC-2-(48-113) lacking the third disulfide bond that discriminates HCC-2 from most other chemokines was synthesized. For disulfide bond formation, oxidative folding was compared with the use of Acm/Trt protection. HCC-2-(48-113) and the mutant [Ala64,104]HCC-2-(48-113) were further analyzed by CD and one-dimensional 1H NMR-spectroscopy. Both peptides adopt a similar stable secondary and tertiary structure in solution.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Former Professors > Chair Biopolymers - Univ.-Prof. Dr. Paul Rösch
Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Former Professors
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Biopolymers
Result of work at the UBT: Yes
DDC Subjects: 500 Science > 540 Chemistry
500 Science > 570 Life sciences, biology
Date Deposited: 24 Jan 2019 08:02
Last Modified: 16 May 2019 05:37
URI: https://eref.uni-bayreuth.de/id/eprint/47013