Title data
Pagonis, Vasilis ; Kreutzer, Sebastian ; Duncan, Alex Roy ; Rajovic, Ena ; Laag, Christian ; Schmidt, Christoph:
On the stochastic uncertainties of thermally and optically stimulated luminescence signals : A Monte Carlo approach.
In: Journal of Luminescence.
Vol. 219
(2020)
.
- No. 116945.
ISSN 0022-2313
DOI: https://doi.org/10.1016/j.jlumin.2019.116945
Project information
Project title: |
|
||||
---|---|---|---|---|---|
Project financing: |
Deutscher Akademischer Austauschdienst |
Abstract in another language
Phenomenological models are frequently used to analyze experimental signals in thermally and optically stimulated luminescence experiments. Typically, these models consist of systems of differential equations describing various electronic transitions. An alternative to the differential equation approach is the use of Monte Carlo (MC) methods, which also allow an estimation of the theoretical stochastic uncertainty of the intensity of the luminescence signal. By running and averaging several MC variants, these stochastic uncertainties are estimated in this paper for various luminescence models. In the case of first-order kinetics processes, the MC results compare well with previously published analytical results for the coefficient of variation (CV) in stochastic linear pure death processes. By contrast, no analytical results are available for the more general one trap one recombination center model (OTOR), and MC is the only method available for estimating the stochastic uncertainties. In this paper the CV coefficients are simulated for three commonly used experimental stimulation modes, namely thermally stimulated luminescence (TL), continuous-wave optically stimulated luminescence (CW-OSL) and linearly modulated OSL (LM-OSL). The results of the simulations show that CW-OSL signals have the smallest CV values among the three stimulation modes, and therefore these signals are least likely to exhibit stochastic variations. The stochastic uncertainties in these phenomenological models are discussed in the context of single grain luminescence experiments and nanodosimetric materials, in which one deals with small numbers of charge carriers.
Further data
Item Type: | Article in a journal |
---|---|
Refereed: | Yes |
Keywords: | Birth and death stochastic processes; Monte Carlo method; Thermoluminescence; Optically stimulated luminescence; Infrared stimulated luminescence |
Institutions of the University: | Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Former Professors > Chair Geomorphology - Univ.-Prof. Dr. Ludwig Zöller Profile Fields > Advanced Fields > Ecology and the Environmental Sciences Profile Fields > Advanced Fields > Nonlinear Dynamics Research Institutions > Research Centres > Bayreuth Center of Ecology and Environmental Research- BayCEER |
Result of work at the UBT: | Yes |
DDC Subjects: | 500 Science > 550 Earth sciences, geology |
Date Deposited: | 09 Jan 2020 10:44 |
Last Modified: | 09 Jan 2020 10:44 |
URI: | https://eref.uni-bayreuth.de/id/eprint/53692 |