## Title data

Grüne, Lars:

**Computing Lyapunov functions using deep neural networks.**

Bayreuth
,
2020
. - 27 p.

## Related URLs

## Abstract in another language

We propose a deep neural network architecture and a training algorithm for computing approximate Lyapunov functions of systems of nonlinear ordinary differential equations. Under the assumption that the system admits a compositional Lyapunov function, we prove that the number of neurons needed for an approximation of a Lyapunov function with fixed accuracy grows only polynomially in the state dimension, i.e., the proposed approach is able to overcome the curse of dimensionality. We show that nonlinear systems satisfying a small-gain condition admit compositional Lyapunov functions. Numerical examples in up to ten space dimensions illustrate the performance of the training scheme.