Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Climate controls plant life‐form patterns on a high‐elevation oceanic island

Title data

Irl, Severin D. H. ; Obermeier, Alexander ; Beierkuhnlein, Carl ; Steinbauer, Manuel:
Climate controls plant life‐form patterns on a high‐elevation oceanic island.
In: Journal of Biogeography. (August 2020) .
ISSN 0305-0270
DOI: https://doi.org/10.1111/jbi.13929

Abstract in another language

Aim: Plant life‐forms characterize key morphological strategies that enable large‐scale comparisons of plant communities. This study applies Raunkiær's plant life‐form concept that was developed for temperate climate to a subtropical island flora, in parts, dominated by summer aridity. We quantify how plant life‐form patterns as well as patterns of important plant functional traits (PFTs) relate to important climate and topographic characteristics.
Location: La Palma, Canary Islands.
Taxon: Flora of La Palma.
Methods: We assigned each native plant species a plant life‐form, that is, phanerophyte, chamaephyte, hemicryptophyte, geophyte and therophyte, as well as PFTs (succulence and N‐fixer). We used stacked species distribution models to assess occurrence probability for each species using the Atlantis database (500 m × 500 m grid). We related richness and percentage values for each plant life‐form and PFT to climate and topography.
Results: Plant life‐forms and PFTs showed a clear pattern within geographic but also climate space, while topography had a minor effect. Phanerophytes mainly contributed to the flora in humid areas. Chamaephytes and hemicryptophytes most strongly contributed to the summit scrub flora and, to some degree, also to the arid coastal regions. Geophytes and therophytes were mainly found in dry coastal regions. N‐fixers contributed mainly to warm‐arid and cool‐arid regions, while succulent species were mainly found in arid coastal regions.
Main conclusions: Raunkiær's plant life‐form concept can be comprehensively transferred to a subtropical island flora by adapting to local unfavourable growing conditions, that is, aridity. Using the strong environmental gradients offered by our study island, we identify substantial climate‐driven variation in patterns of plant life‐forms and PFTs that might be used for large‐scale comparisons in macroecological studies. The growth strategies reflected in Raunkiær's plant life‐forms suggest differences in species establishment and coexistence dynamics within different parts of the island's climate space.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Chair Biogeography
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Earth Sciences > Chair Biogeography > Chair Biogeography - Univ.-Prof. Dr. Carl Beierkuhnlein
Faculties > Faculty of Cultural Studies > Department of Sport Science > Professor Sport Ecology
Faculties > Faculty of Cultural Studies > Department of Sport Science > Professor Sport Ecology > Professor Sport Ecology - Univ.-Prof. Dr. Manuel Jonas Steinbauer
Profile Fields > Advanced Fields > Ecology and the Environmental Sciences
Research Institutions > Research Centres > Bayreuth Center of Ecology and Environmental Research- BayCEER
Result of work at the UBT: Yes
DDC Subjects: 500 Science > 500 Natural sciences
500 Science > 550 Earth sciences, geology
500 Science > 570 Life sciences, biology
500 Science > 580 Plants (Botany)
Date Deposited: 21 Aug 2020 06:18
Last Modified: 21 Aug 2020 06:18
URI: https://eref.uni-bayreuth.de/id/eprint/56617