Title data
Bertleff, Benjamin ; Haider, Muhammad Salman ; Claußnitzer, Johannes ; Korth, Wolfgang ; Wasserscheid, Peter ; Jess, Andreas ; Albert, Jakob:
Extractive Catalytic Oxidative Denitrogenation of Fuels and Their Promoting Effect for Desulfurization Catalyzed by Vanadium Substituted Heteropolyacids and Molecular Oxygen.
In: Energy & Fuels.
Vol. 34
(June 2020)
Issue 7
.
- pp. 8099-8109.
ISSN 1520-5029
DOI: https://doi.org/10.1021/acs.energyfuels.0c00864
Abstract in another language
In this contribution, we successfully apply our recently developed extractive catalytic oxidative desulfurization technology (ECODS) for the removal of different nitrogen-containing compounds (ECODN) from both gasoline and diesel fuels. Hereby, indole, 1-methylindole, 2-methylindole, 3-methylindole, quinoline, and quinaldine are completely removed from different model fuels under oxidative conditions, i.e., 120 °C and 20 bar oxygen, with the use of an aqueous HPA-5 catalyst solution within minutes. Indole and quinoline species are oxidized selectively to water-soluble compounds such as acetic acid (6–16%), formic acid (4–13%), and oxalic acid (0–4%), which are extracted in situ into the aqueous catalyst solution. Moreover, mainly carbon dioxide (71–86%) is formed in the gas phase. Our catalyst system is also very effective for denitrogenation at ambient conditions. In contrast to the removal of N-compounds at 120 °C and 20 bar oxygen, the reaction at 25 °C and atmospheric pressure produces solid N-containing compounds. By combining ECODS and ECODN in one vessel, desulfurization and denitrogenation of different model oils is possible in parallel. Interestingly, N-compounds present in the fuel are found to significantly promote the desulfurization reaction.
Further data
Item Type: | Article in a journal |
---|---|
Refereed: | Yes |
Additional notes: | Affiliation of Authors Bertleff, Haider, Wasserscheid, Albert: Lehrstuhl für Chemische Reaktionstechnik, Friedrich-Alexander-Universität |
Institutions of the University: | Faculties > Faculty of Engineering Science Faculties > Faculty of Engineering Science > Chair Chemical Engineering Faculties > Faculty of Engineering Science > Chair Chemical Engineering > Chair Chemical Engineering - Univ.-Prof. Dr.-Ing. Andreas Jess Research Institutions > Research Units > ZET - Zentrum für Energietechnik |
Result of work at the UBT: | Yes |
DDC Subjects: | 500 Science > 540 Chemistry 600 Technology, medicine, applied sciences > 600 Technology 600 Technology, medicine, applied sciences > 620 Engineering 600 Technology, medicine, applied sciences > 660 Chemical engineering |
Date Deposited: | 08 Oct 2020 07:37 |
Last Modified: | 08 Oct 2020 07:37 |
URI: | https://eref.uni-bayreuth.de/id/eprint/58033 |