Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Distributed observations of wind direction using microstructures attached to actively heated fiber-optic cables

Titelangaben

Lapo, Karl ; Freundorfer, Anita ; Pfister, Lena ; Schneider, Johann ; Selker, John S. ; Thomas, Christoph:
Distributed observations of wind direction using microstructures attached to actively heated fiber-optic cables.
In: Atmospheric Measurement Techniques. Bd. 13 (2020) Heft 3 . - S. 1563-1573.
ISSN 1867-8548
DOI: https://doi.org/10.5194/amt-13-1563-2020

Volltext

Link zum Volltext (externe URL): Volltext

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
ERC Consolidator Grant DarkMix
724629
Open Access Publizieren
Ohne Angabe

Projektfinanzierung: Andere
European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme

Zugehörige Forschungsdaten

Abstract

The weak-wind boundary layer is characterized by turbulent and submesoscale motions that break the assumptions necessary for using traditional eddy covariance observations such as horizontal homogeneity and stationarity, motivating the need for an observational system that allows spatially resolving measurements of atmospheric flows near the surface. Fiber-optic distributed sensing (FODS) potentially opens the door to observing a wide range of atmospheric processes on a spatially distributed basis and to date has been used to resolve the turbulent fields of air temperature and wind speed on scales of seconds and decimeters. Here we report on progress developing a FODS technique for observing spatially distributed wind direction. We affixed microstructures shaped as cones to actively heated fiber-optic cables with opposing orientations to impose directionally sensitive convective heat fluxes from the fiber-optic cable to the air, leading to a difference in sensed temperature that depends on the wind direction. We demonstrate the behavior of a range of microstructure parameters including aspect ratio, spacing, and size and develop a simple deterministic model to explain the temperature differences as a function of wind speed. The mechanism behind the directionally sensitive heat loss is explored using computational fluid dynamics simulations and infrared images of the cone-fiber system. While the results presented here are only relevant for observing wind direction along one dimension, it is an important step towards the ultimate goal of a full three-dimensional, distributed flow sensor.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: Distributed Temperature Sensing; Turbulence; Heat Transfer; Turbulence Kinetic Energy; Wind Direction; Wind Speed
Institutionen der Universität: Fakultäten
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Geowissenschaften
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Geowissenschaften > Professur Mikrometeorologie
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Geowissenschaften > Professur Mikrometeorologie > Professur Mikrometeorologie - Univ.-Prof. Dr. Christoph K. Thomas
Profilfelder
Profilfelder > Advanced Fields
Profilfelder > Advanced Fields > Ökologie und Umweltwissenschaften
Forschungseinrichtungen
Forschungseinrichtungen > Forschungszentren
Forschungseinrichtungen > Forschungszentren > Bayreuther Zentrum für Ökologie und Umweltforschung - BayCEER
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik
500 Naturwissenschaften und Mathematik > 550 Geowissenschaften, Geologie
Eingestellt am: 31 Okt 2020 22:00
Letzte Änderung: 01 Jun 2022 12:06
URI: https://eref.uni-bayreuth.de/id/eprint/58968