Titlebar

Bibliografische Daten exportieren
Literatur vom gleichen Autor
plus auf ERef Bayreuth
plus bei Google Scholar

 

Minimal models for 2-coverings of elliptic curves

Titelangaben

Cremona, John E. ; Stoll, Michael:
Minimal models for 2-coverings of elliptic curves.
In: LMS Journal of Computation and Mathematics. Bd. 5 (2002) . - S. 220-243.
ISSN 1461-1570
DOI: 10.1112/S1461157000000760

Abstract

This paper concerns the existence and algorithmic determination of minimal models for curves of genus 1, given by equations of the form y2 = Q(x), where Q(x) has degree 4. These models are used in the method of 2-descent for computing the rank of an elliptic curve. The results described here are complete for unramified extensions of Q2 and Q3, and for all p-adic fields for p greater than or equal to 5. The primary motivation for this work was to complete the results of Birch and Swinnerton-Dyer, which are incomplete in the case of Q2. The results in this case (when applied to 2-coverings of elliptic curves over Q) yield substantial improvements in the running times of the 2-descent algorithm implemented in the program mwrank. The paper ends with a section on implementation and examples, and an appendix gives constructive proofs in sufficient detail to be used for implementation.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik II (Computeralgebra)
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik II (Computeralgebra) > Lehrstuhl Mathematik II (Computeralgebra) - Univ.-Prof. Dr. Michael Stoll
Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut
Titel an der UBT entstanden: Nein
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 510 Mathematik
Eingestellt am: 03 Feb 2015 07:21
Letzte Änderung: 12 Feb 2015 12:23
URI: https://eref.uni-bayreuth.de/id/eprint/6224