Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Quantifying spatiotemporal gradient formation in early Caenorhabditis elegans embryos with lightsheet microscopy

Title data

Benelli, Rebecca ; Struntz, Philipp ; Hofmann, Dirk ; Weiss, Matthias:
Quantifying spatiotemporal gradient formation in early Caenorhabditis elegans embryos with lightsheet microscopy.
In: Journal of Physics D. Vol. 53 (May 2020) Issue 29 . - 295401.
ISSN 1361-6463
DOI: https://doi.org/10.1088/1361-6463/ab8597

Abstract in another language

Major steps in embryonic development, e.g. body axes formation or asymmetric cell divisions, rely on symmetry-breaking events and gradient formation. Using three-dimensional time-resolved lightsheet microscopy, we have studied a prototypical example for self-organized gradient formation in the model organism Caenorhabditis elegans. In particular, we have monitored in detail the formation of a concentration and mobility gradient of PIE-1 proteins as well as the partitioning behavior of vital organelles prior to the first, asymmetric cell division. Our data confirm the emergence of a concentration gradient of PIE-1 along the embryo’s anterior–posterior (AP) axis but they also reveal a previously unseen depletion zone near to the cell cortex that is not present for MEX-5 proteins. Time-resolved spatial diffusion maps, acquired with SPIM-FCS, highlight the successive emergence of a mobility gradient of PIE-1 along the AP axis and suggest an almost linear decrease of fast diffusing PIE-1 proteins along the AP axis. Quantifying the subordinated dissemination of vital organelles prior to the first cell division, i.e. gradient formation on larger length scales, we find a significant asymmetry in the partitioning of the endoplasmic reticulum and mitochondria to the anterior and posterior part of the cell, respectively. Altogether, our spatiotemporally resolved data indicate that current one-dimensional model descriptions for gradient formation during C. elegans embryogenesis, i.e. a mere projection to the AP axis, might need an extension to a full three-dimensional description. Our data also advocate the use of lightsheet microscopy techniques to capture the actual three-dimensional nature of embryonic self-organization events.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics > Chair Experimental Physics I - Physics of Living Matter > Chair Experimental Physics I - Physics of Living Matter - Univ.-Prof. Dr. Matthias Weiss
Faculties
Faculties > Faculty of Mathematics, Physics und Computer Science
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics > Chair Experimental Physics I - Physics of Living Matter
Result of work at the UBT: Yes
DDC Subjects: 500 Science > 530 Physics
500 Science > 570 Life sciences, biology
Date Deposited: 23 Feb 2021 12:37
Last Modified: 25 Feb 2021 11:00
URI: https://eref.uni-bayreuth.de/id/eprint/63346