Bibliografische Daten exportieren
Literatur vom gleichen Autor
plus auf ERef Bayreuth
plus bei Google Scholar


Enzymatic degradation of films, particles and non-woven meshes made of a recombinant spider silk protein


Müller-Herrmann, Susanne ; Scheibel, Thomas:
Enzymatic degradation of films, particles and non-woven meshes made of a recombinant spider silk protein.
In: ACS Biomaterials Science & Engineering. Bd. 1 (13 April 2015) Heft 4 . - S. 247-259.
ISSN 2373-9878
DOI: https://doi.org/10.1021/ab500147u


Link zum Volltext (externe URL): Volltext


The performance of biomaterials in vivo is largely influenced by their stability and the rate and extent to which they degrade. Materials for tissue engineering applications, for example, have to be mechanically stable to support cell adhesion and proliferation without collapsing. On the other hand they need to be replaced gradually by native extracellular matrix and have to be (slowly) biodegradable. Therefore, it is of critical importance to be able to tune the degradation behavior of a biomaterial. Recombinantly produced spider silk proteins have been shown to be versatile biopolymers for medical applications. They can be processed into a variety of morphologies, and by chemical or genetic modification the properties can be adjusted to specific demands. Furthermore, in vivo experiments confirmed the lack of immunological reactions towards certain spider silks. In this study the degradation behavior of the recombinant spider silk protein eADF4(C16) in solution as well as processed into particles, films and non-woven meshes was analyzed, and the impact of crosslinking of the scaffolds was assessed thereon. In addition to two bacterial proteolytic model enzymes, protease type XIV from Streptomyces griseus (PXIV) and collagenase type IA from Clostridium histolyticum (CHC) used in all experiments, several recombinant human matrix metalloproteinases (MMPs) and one elastase were used in studying degradation of soluble eADF4(C16). For soluble eADF4(C16) all degradation kinetics were similar. In case of eADF4(C16) scaffolds significant differences were observable between PXIV and CHC. All scaffolds were more stable towards proteolytic degradation in the presence of CHC than in the presence of PXIV. Further, particles were degraded significantly faster than films, and non-woven meshes showed the highest proteolytic stability. Chemical crosslinking of the scaffolds led to a decrease in both degradation rate and extent.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Zusätzliche Informationen: Der Artikel wurde zunächst online veröffentlicht.
Keywords: recombinant silk proteins, crosslinking, biodegradation, MMPs, protease XIV, collagenase IA, scaffolds for biomedical applications
Institutionen der Universität: Fakultäten
Fakultäten > Fakultät für Ingenieurwissenschaften
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Biomaterialien
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Biomaterialien > Lehrstuhl Biomaterialien - Univ.-Prof. Dr. Thomas Scheibel
Profilfelder > Advanced Fields > Neue Materialien
Profilfelder > Advanced Fields > Molekulare Biowissenschaften
Profilfelder > Advanced Fields > Polymer- und Kolloidforschung
Profilfelder > Emerging Fields > Lebensmittel- und Gesundheitswissenschaften
Profilfelder > Advanced Fields
Profilfelder > Emerging Fields
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Eingestellt am: 10 Mär 2015 13:01
Letzte Änderung: 26 Nov 2015 10:51
URI: https://eref.uni-bayreuth.de/id/eprint/7982