Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Electrospun nanofiber belts made from high performance copolyimide

Title data

Chen, Shuiliang ; Hu, Ping ; Greiner, Andreas ; Cheng, Chuyun ; Cheng, Haofang ; Chen, Fangfang ; Hou, Haoqing:
Electrospun nanofiber belts made from high performance copolyimide.
In: Nanotechnology. Vol. 19 (January 2008) Issue 1 . - 015604.
ISSN 1361-6528
DOI: https://doi.org/10.1088/0957-4484/19/01/015604

Official URL: Volltext

Abstract in another language

Electrospun nanofibers based on copolyimides were made, aiming at finding a promising method for improving the mechanical properties of electrospun polyimide nanofibers. The copolyimide had a backbone consisting of 3,3', 4,4'-biphenyl-tetracarboxylic dianhydride (BPDA), biphenylamide (BPA) and 4,4'-oxydianiline (ODA) residues. The structure and composition of the copolyimide was controlled by the ratio of rigid BPA and flexible ODA moieties. The electrospun copolyimide nanofibers were collected in the form of a belt using a rotating disc with a rim of 8 mm width. Scanning electron microscopy (SEM), infrared (IR) spectroscopy, x-ray scattering and tensile testing, dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) were used to characterize the nanofiber belts. The nanofibers had a diameter range from 80 to 300 nm and were well aligned in the belts. The thermal stability of the nanofiber belts was over 460 degrees C. The tensile test showed that the copolyimide nanofiber belts had much better mechanical properties than either of the flexible and rigid homo-polyimide (homo-PI) nanofiber belts. The tensile strength, modulus and elongation to break of the copolyimide nanofiber belt with BPA/ODA ratio of 40/60 are respectively 1.1 +/- 0.1 GPa, 6.2 +/- 0.7 GPa and 20.8 +/- 1.2%, compared to 459 +/- 36 MPa, 2.1 +/- 0.3 GPa and 41.3 +/- 2.2% for BPDA/ODA homo-PI as well as 384 +/- 18 MPa, 11.5 +/- 0.6 GPa and 3.9 +/- 0.1% for BPDA/BPA homo-PI. The important feature is that the electrospun polymer nanofibers can be made very strong by using copolyimides as spinning materials.

Further data

Item Type: Article in a journal
Refereed: Yes
Keywords: CARBON NANOTUBES; STRENGTH; MODULUS; FIBERS
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Macromolecular Chemistry II > Chair Macromolecular Chemistry II - Univ.-Prof. Dr. Andreas Greiner
Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Macromolecular Chemistry II
Result of work at the UBT: No
DDC Subjects: 500 Science > 540 Chemistry
Date Deposited: 10 Apr 2015 09:10
Last Modified: 10 Apr 2015 09:10
URI: https://eref.uni-bayreuth.de/id/eprint/9660