Titlebar
Publications listed by divisions  

Projects: Algorithmic and Experimental Methods in Algebra, Geometry and Number Theory

One level up ...
Export as [feed] RSS 1.0 [feed] RSS 2.0
Group by: Year | Person
Jump to: 2017 | 2015 | 2014
Number of items: 7.

2017

Stoll, Michael:
Chabauty without the Mordell-Weil group.
In: Böckle, Gebhard ; Decker, Wolfram ; Malle, Gunter (ed.): Algorithmic and Experimental Methods in Algebra, Geometry, and Number Theory. - Cham : Springer, 2017 . - pp. 623-663
DOI: https://doi.org/10.1007/978-3-319-70566-8_28

Stoll, Michael:
An explicit theory of heights for hyperelliptic Jacobians of genus three.
In: Böckle, Gebhard ; Decker, Wolfram ; Malle, Gunter (ed.): Algorithmic and Experimental Methods in Algebra, Geometry, and Number Theory. - Cham : Springer, 2017 . - pp. 665-715
DOI: https://doi.org/10.1007/978-3-319-70566-8_29

2015

Freitas, Nuno ; Le Hung, Bao V. ; Siksek, Samir:
Elliptic curves over real quadratic fields are modular.
In: Inventiones Mathematicae. Vol. 201 (July 2015) Issue 1 . - pp. 159-206.
DOI: https://doi.org/10.1007/s00222-014-0550-z

Freitas, Nuno ; Siksek, Samir:
The asymptotic Fermat's last theorem for five-sixths of real quadratic fields.
In: Compositio Mathematica. Vol. 151 (2015) Issue 8 . - pp. 1395-1415.
DOI: https://doi.org/10.1112/S0010437X14007957

Freitas, Nuno ; Siksek, Samir:
Criteria for irreducibility of mod p representations of Frey curves.
In: Journal de Théorie des Nombres de Bordeaux. Vol. 27 (2015) Issue 1 . - pp. 67-76.
DOI: https://doi.org/10.5802/jtnb.894

Freitas, Nuno ; Siksek, Samir:
Fermat’s last theorem over some small real quadratic fields.
In: Algebra & Number Theory. Vol. 9 (2015) Issue 4 . - pp. 875-895.
DOI: https://doi.org/10.2140/ant.2015.9.875

2014

Poonen, Bjorn ; Stoll, Michael:
Most odd degree hyperelliptic curves have only one rational point.
In: Annals of Mathematics. Vol. 180 (2014) Issue 3 . - pp. 1137-1166.
DOI: https://doi.org/10.4007/annals.2014.180.3.7

This list was generated on Thu Nov 14 22:16:36 2019 CET.
[Top of page]
Use this URL to embed this page in external websites:
http://eref.uni-bayreuth.de/cgi/exportview/projekt/ad8922398e3906722e1713695385d52e/XML/ad8922398e3906722e1713695385d52e.xml