Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Multichromophore light harvesting in hybrid solar cells

Title data

Bandara, Jayasundera ; Gräf, Katja ; Thelakkat, Mukundan:
Multichromophore light harvesting in hybrid solar cells.
In: Physical Chemistry Chemical Physics. Vol. 13 (2011) . - pp. 12906-12911.
ISSN 1463-9084
DOI: https://doi.org/10.1039/C1CP21697J

Project information

Project financing: Deutsche Forschungsgemeinschaft

Abstract in another language

A new technologically relevant method for multichromophore sensitizing of hybrid blend solar cells is presented. Two dyes having complementary absorption in the UV-visible regions are individually adsorbed on nanocrystalline TiO2 powder. These dyed TiO2 nanoparticles are blended with an organic hole-conductor (HC) Spiro-OMeTAD in desired compositions and applied on a conducting substrate by doctor-blading at room temperature to fabricate multichromophore-sensitized hybrid blend solar cells. The external quantum efficiency (EQE) of the single hybrid layer system fabricated with two dyes, that absorb mainly UV (TPD dye) and visible regions (Ru-TPA-NCS dye), exhibited a clear panchromatic response with the sum of the EQE characteristics of each single dye cell. The first results of a multichromophore-sensitized solid-state solar cell showed Jsc of 2.1 mA cm−2, Voc of 645 mV, FF of 47% and efficiency of 0.65% at AM 1.5 G, 100 mW cm−2 illumination intensity. The Jsc of the multichromophore cell is the sum of the individually dyed solar cells. The process described here is technically very innovative and very simple in procedure. It has potentials to be adopted for panchromatic sensitization using more than two dyes in a single hybrid layer or layer-wise fabrication of a tandem structure at room temperature.

Further data

Item Type: Article in a journal
Refereed: Yes
Additional notes: Autorin Katja Gräf unter dem Namen Katja Willinger
Institutions of the University: Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Macromolecular Chemistry I
Profile Fields
Profile Fields > Emerging Fields
Profile Fields > Emerging Fields > Energy Research and Energy Technology
Research Institutions
Research Institutions > Collaborative Research Centers, Research Unit
Research Institutions > Collaborative Research Centers, Research Unit > SFB 840 Von partikulären Nanosystemen zur Mesotechnologie
Research Institutions > Collaborative Research Centers, Research Unit > SFB 840 Von partikulären Nanosystemen zur Mesotechnologie > SFB 840 - TP B 7
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Professorship Applied Functional Polymers > Professorship Applied Functional Polymers - Univ.-Prof. Dr. Mukundan Thelakkat
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Professorship Applied Functional Polymers
Result of work at the UBT: Yes
DDC Subjects: 500 Science > 540 Chemistry
Date Deposited: 13 Apr 2016 06:58
Last Modified: 21 Jul 2016 08:21
URI: https://eref.uni-bayreuth.de/id/eprint/1206