Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Spectroelectrochemical studies of hole percolation on functionalised nanocrystalline TiO2 films : a comparison of two different ruthenium complexes

Title data

Li, Xiaoe ; Nazeeruddin, Mohammad K. ; Thelakkat, Mukundan ; Barnes, Piers R. F. ; Vilar, Ramón ; Durrant, James R.:
Spectroelectrochemical studies of hole percolation on functionalised nanocrystalline TiO2 films : a comparison of two different ruthenium complexes.
In: Physical Chemistry Chemical Physics. Vol. 13 (2011) Issue 4 . - pp. 1575-1584.
ISSN 1463-9084
DOI: https://doi.org/10.1039/c0cp01013h

Official URL: Volltext

Project information

Project financing: Andere

Abstract in another language

We report the application of spectroelectrochemical techniques to compare the hole percolation dynamics of molecular networks of two ruthenium bipyridyl complexes adsorbed onto mesoporous, nanocrystalline TiO2 films. The percolation dynamics of the ruthenium complex cis-di(thiocyanato)(2,2'-bipyridyl-4,4'-dicarboxylic acid)-(2,2'-bipyridyl-4,4'-tridecyl) ruthenium(II), N621, is compared with those observed for an analogous dye with an additional tri-phenyl amine (TPA) donor moiety, cis-di(thiocyanato)(2,2'-bipyridyl-4,4'-dicarboxylic acid)-(2,2'-bipyridyl-4,4'-bis(vinyltriphenylamine)) ruthenium(II), HW456. The in situ oxidation of these ruthenium complexes adsorbed to the TiO2 films is monitored by cyclic voltammetry and voltabsorptometry, whilst the dynamics of hole (cation) percolation between adsorbed ruthenium complexes is monitored by potentiometric spectroelectrochemistry and chronoabsorptometry. The hole diffusion coefficient, D-eff, is shown to be dependent on the dye loading on the nanocrystalline TiO2 film, with a threshold observed at similar to 60% monolayer surface coverage for both dyes. The hole diffusion coefficient of HW456 is estimated to be 2.6 x 10(-8) cm(2)/s, 20-fold higher than that obtained for the control N621, attributed to stronger electronic coupling between the TPA moieties of HW456 accelerating the hole percolation dynamics. The presence of mercuric ions, previously shown to bind to the thiocyanates of analogous ruthenium complexes, resulted in a quenching of the hole percolation for N621/TiO2 films and an enhancement for HW456/TiO2 films. These results strongly suggest that the hole percolation pathway is along the overlapped neighbouring -NCS groups for the N621 molecules, whereas in HW456 molecules cation percolation proceeds between intermolecular TPA ligands. These results are discussed in the context of their relevance to the process of dye regeneration in dye sensitised solar cells, and to the molecular wiring of wide bandgap inorganic materials for battery and sensing applications.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Macromolecular Chemistry I
Profile Fields
Profile Fields > Emerging Fields
Profile Fields > Emerging Fields > Energy Research and Energy Technology
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Professor Applied Functional Polymers > Professor Applied Functional Polymers - Univ.-Prof. Dr. Mukundan Thelakkat
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Professor Applied Functional Polymers
Result of work at the UBT: Yes
DDC Subjects: 500 Science > 540 Chemistry
Date Deposited: 13 Apr 2016 08:57
Last Modified: 08 Sep 2020 07:25
URI: https://eref.uni-bayreuth.de/id/eprint/1231