Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Galois representations of orthogonal rigid local systems

Titelangaben

Schulte, Michael:
Galois representations of orthogonal rigid local systems.
Bayreuth , 2012
( Dissertation, 2012 , Universität Bayreuth, Fakultät für Mathematik, Physik und Informatik)

Volltext

Link zum Volltext (externe URL): Volltext

Abstract

We use the middle convolution introduced by Katz to construct a families of lisse sheaves on the affine line without two points. These correspond to continuous representations of the etale fundamental group, which can be specialized to compatible systems of Galois representations. This leads to the second maximally unipotent family. Because of the geometric origin, we can show using a theorem of Barnet-Lamb, Gee, Geraghty and Taylor that they are potentially automorphic.

Abstract in weiterer Sprache

Durch die von Katz eingeführte mittlere Faltung erzeugen wir glatte Garben auf der affinen Geraden ohne zwei Punkte. Diese korrespondieren zu stetigen Darstellungen der etalen Fundamentalgruppe, die zu kompatiblen Systemen von Galoisdarstellungen spezialisiert werden können. So erhalten wir die zweite maximal unipotenten Familie. Durch den geometrischen Ursprung können wir mit Hilfe eines Satzes von Barnet-Lamb, Gee, Geraghty und Taylor zeigen, dass diese potentiell automorph sind.

Weitere Angaben

Publikationsform: Dissertation
Zusätzliche Informationen: msc: 11A67; msc: 12F12
Keywords: Langlands-Vermutung , Galois-Darstellung; Automorphie , Dettweiler , Katz, Taylor , Absolute Galoisgruppe; Automorphy , Dettweiler , Katz , Taylor , absolute Galois group
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut
Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 510 Mathematik
Eingestellt am: 01 Mai 2015 11:00
Letzte Änderung: 01 Mai 2015 11:00
URI: https://eref.uni-bayreuth.de/id/eprint/12559