Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

DsbA-mediated disulfide bond formation and catalyzed prolyl isomerization in oxidative protein folding

Title data

Frech, Christian ; Schmid, Franz X.:
DsbA-mediated disulfide bond formation and catalyzed prolyl isomerization in oxidative protein folding.
In: The Journal of Biological Chemistry. Vol. 270 (10 March 1995) Issue 10 . - pp. 5367-5374.
ISSN 1083-351X
DOI: https://doi.org/10.1074/jbc.270.10.5367

Abstract in another language

The interrelationship between the acquisition of ordered structure, prolyl isomerization, and the formation of the disulfide bonds in assisted protein folding was investigated by using a variant of ribonuclease T1 (C2S/C10N-RNase T1) with a single disulfide bond and two cis-prolyl bonds as a model protein. The thiol-disulfide oxidoreductase DsbA served as the oxidant for forming the disulfide bond and prolyl isomerase A as the catalyst of prolyl isomerization. Both enzymes are from the periplasm of Escherichia coli. Reduced C2S/C10N-RNase T1 is unfolded in 0 M NaCl, but native-like folded in > or = 2 M NaCl. Oxidation of 5 microM C2S/C10N-RNase T1 by 8 microM DsbA (at pH 7.0, 25 degrees C) is very rapid with a t1/2 of about 10 s (the second-order rate constant is 7 x 10(3) s-1 M-1), irrespective of whether the reduced molecules are unfolded or folded. When they are folded, the product of oxidation is the native protein. When they are denatured, first the disulfide bond is formed in the unfolded protein chains and then the native structure is acquired. This slow reaction is limited in rate by prolyl isomerization and catalyzed by prolyl isomerase. The efficiency of this catalysis is strongly decreased by the presence of the disulfide bond. Apparently, the rank order of chain folding, prolyl isomerization, and disulfide bond formation can vary in the oxidative folding of ribonuclease T1. Such a degeneracy could generally be an advantage for protein folding both in vitro and in vivo.

Further data

Item Type: Article in a journal
Refereed: Yes
Additional notes: PubMed-ID: 7890650
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Former Professors > Professorship Biochemistry - Univ.-Prof. Dr. Franz Xaver Schmid
Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Professorship Biochemistry
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Former Professors
Result of work at the UBT: Yes
DDC Subjects: 500 Science > 540 Chemistry
Date Deposited: 15 May 2015 08:42
Last Modified: 15 May 2015 08:42
URI: https://eref.uni-bayreuth.de/id/eprint/13475