Titelangaben
Kantor, Anastasia ; Kantor, Innokenty ; Kurnosov, Alexander ; Kuznetsov, Alexei Y. ; Dubrovinskaia, Natalia ; Krisch, Michael ; Bosak, Alexeï ; Dmitriev, Vladimir ; Urusov, Vadim S. ; Dubrovinsky, Leonid:
Sound wave velocities of fcc Fe–Ni alloy at high pressure and temperature by mean of inelastic X-ray scattering.
In: Physics of the Earth and Planetary Interiors.
Bd. 164
(2007)
Heft 1–2
.
- S. 83-89.
ISSN 1872-7395
DOI: https://doi.org/10.1016/j.pepi.2007.06.006
Angaben zu Projekten
Projektfinanzierung: |
Deutsche Forschungsgemeinschaft ESF |
---|
Abstract
Knowledge of the high-pressure and high-temperature elasticity of Fe–Ni alloy with low (5–25%)Ni content is crucial for geosciences since it is probably the major component of the cores of the terrestrial planets and the Moon. Here we present a study of a FeNi alloy with 22at.% of Ni to 72 {GPa} and 715 K, using inelastic X-ray scattering (IXS) and X-ray powder diffraction from polycrystalline material. The X-ray diffraction (XRD) study revealed stability of the face centred cubic (fcc) over the hexagonal close packed (hcp) phase in the whole investigated pressure–temperature range. The study presents first investigations of elasticity of fcc phase of iron–nickel Fe0.₇₈Ni0.₂₂ alloy. The isothermal equations of state were derived at room temperature and at 715 K (K₃00 = 162(1) GPa, K′₃00 = 4.97 ( 1 ) , {V300} = 6.89(1) cm³/mol; {K₇₁₅} = 160(1) GPa, K′₇₁₅ = 4.97 ( 2 ) , {V715} = 6.96(1) cm³/mol). Inelastic X-ray measurements allow the determination of the longitudinal acoustic wave velocity VP, and provide, combined with the measured equations of state, the full isotropic elasticity of the material. We found that within experimental errors our data follow the Birch's law. We did not observe any significant deviations for fcc Fe0.₇₈Ni0.₂₂ from elastic properties of pure ɛ-iron.