Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Intelligent Materials with Adaptive Adhesion Properties Based on Comb-like Polymer Brushes

Titelangaben

Synytska, Alla ; Svetushkina, Ekaterina ; Martina, D. ; Bellmann, Cornelia ; Simon, Frank ; Ionov, Leonid ; Stamm, Manfred ; Creton, C.:
Intelligent Materials with Adaptive Adhesion Properties Based on Comb-like Polymer Brushes.
In: Langmuir. Bd. 28 (2012) Heft 47 . - S. 16444-16454.
ISSN 1520-5827
DOI: https://doi.org/10.1021/la303773b

Abstract

We investigated the adaptive adhesion properties of comb-like random copolymer brushes made of poly(ethylene glycol) (PEG)-poly(dimethylsiloxane) (PDMS) grafted on flat and rough substrates. The properties of the brush layers were investigated using ARXPS, contact angle, electrokinetics, null ellipsometry, and adhesion measurements. It was found that hydrophobic PDMS segments segregate at the brush topmost layer in the dry state. However, hydrophilic PEG chains segregate at the brush topmost layer in the wet state. The adhesion properties of fabricated materials were tested using the AFM colloid probe technique and probe tack tester. It was found that the adhesive properties depend strongly on the mechanical properties (stiff/soft) and chemical functionality (hydrophobicity/hydrophilicity) of the applied adhesion tester as well as on the chemical composition, surface roughness, and thickness of the brush. In particular, hydrophobic PDMS and hydrophilic PEG adhere more strongly to hydrophobically modified and hydrophilic native colloid probes, respectively. Thick brushes are more adhesive than thin ones, and brushes grafted to flat substrates are stickier than those grafted to rough substrates when measured with a hard AFM probe. Unlike the results of adhesion measurements performed using hard AFM probes, the PDMS surface probed by soft pressure-sensitive adhesives (PSA) is almost nonadhesive. However, PEG is strongly adhesive, and the adhesion increases with the PEG fraction in the brush when probed by both hydrophilic and hydrophobic soft adhesives. The surfaces roughness also has a considerable effect on adhesion. Contrary to the adhesion measurements performed by hard AFM colloid probes, the adhesion of rough surfaces measured with a soft PAA or SIS tack tester is greater than that on the corresponding flat one.We investigated the adaptive adhesion properties of comb-like random copolymer brushes made of poly(ethylene glycol) (PEG)-poly(dimethylsiloxane) (PDMS) grafted on flat and rough substrates. The properties of the brush layers were investigated using ARXPS, contact angle, electrokinetics, null ellipsometry, and adhesion measurements. It was found that hydrophobic PDMS segments segregate at the brush topmost layer in the dry state. However, hydrophilic PEG chains segregate at the brush topmost layer in the wet state. The adhesion properties of fabricated materials were tested using the AFM colloid probe technique and probe tack tester. It was found that the adhesive properties depend strongly on the mechanical properties (stiff/soft) and chemical functionality (hydrophobicity/hydrophilicity) of the applied adhesion tester as well as on the chemical composition, surface roughness, and thickness of the brush. In particular, hydrophobic PDMS and hydrophilic PEG adhere more strongly to hydrophobically modified and hydrophilic native colloid probes, respectively. Thick brushes are more adhesive than thin ones, and brushes grafted to flat substrates are stickier than those grafted to rough substrates when measured with a hard AFM probe. Unlike the results of adhesion measurements performed using hard AFM probes, the PDMS surface probed by soft pressure-sensitive adhesives (PSA) is almost nonadhesive. However, PEG is strongly adhesive, and the adhesion increases with the PEG fraction in the brush when probed by both hydrophilic and hydrophobic soft adhesives. The surfaces roughness also has a considerable effect on adhesion. Contrary to the adhesion measurements performed by hard AFM colloid probes, the adhesion of rough surfaces measured with a soft PAA or SIS tack tester is greater than that on the corresponding flat one.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Ingenieurwissenschaften > Professur Biofabrikation > Professur Biofabrikation - Univ.-Prof. Dr. Leonid Ionov
Fakultäten
Fakultäten > Fakultät für Ingenieurwissenschaften
Fakultäten > Fakultät für Ingenieurwissenschaften > Professur Biofabrikation
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 540 Chemie
Eingestellt am: 22 Jun 2017 13:34
Letzte Änderung: 09 Jun 2022 12:17
URI: https://eref.uni-bayreuth.de/id/eprint/37725