Titlebar

Bibliografische Daten exportieren
Literatur vom gleichen Autor
plus auf ERef Bayreuth
plus bei Google Scholar

 

Phase-channel dynamics reveal the role of impurities and screening in a quasi-one-dimensional charge-density wave system

Titelangaben

Thomson, M. D. ; Rabia, K. ; Meng, F. ; Bykov, Maxim ; van Smaalen, Sander ; Roskos, H. G.:
Phase-channel dynamics reveal the role of impurities and screening in a quasi-one-dimensional charge-density wave system.
In: Scientific Reports. Bd. 7 (17 Mai 2017) Heft 1 . - 9 S..
ISSN 2045-2322
DOI: 10.1038/s41598-017-02198-x

Volltext

Link zum Volltext (externe URL): Volltext

Abstract

Charge density waves (CDWs), i.e. the periodic spatial modulation of coupled electronic and lattice density, are ubiquitous in low-dimensional conductors and have taken on renewed relevance due their role in state-of-the-art materials, e.g. high-Tc superconductors, topological insulators and low-dimensional carbon. As CDWs are described by a complex order parameter to represent both the amplitude and phase, they are formally analogous to BCS superconductors and spin-waves, providing a prototype of collective phenomena for the further development of field theories and ab-initio calculations of complex solids. The low-energy excitations are mixed electron-phonon quanta which ideally separate into an amplitude and phase channel, and provide a sensitive probe of the ground state and non-equilibrium dynamics, including ultrafast photoinduced phase transitions. While recent studies of the amplitude modes have brought substantial progress aided by a phenomenological Ginzburg-Landau framework, we focus here on the phase modes using ultrafast terahertz spectroscopy. Experiments on K0.3MoO3 provide a more complete picture, and reveal a high sensitivity to interactions with impurities and screening effects from photogenerated carriers, both of which can be accounted for by generalizations of the model. Moreover, our considerations emphasize the need to revisit the treatment of inherent electronic damping in quantum-mechanical CDW theories.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Zusätzliche Informationen: Article number: 2039
Unmapped bibliographic data:
JO - Scientific Reports [Field not mapped to EPrints]
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Fachgruppe Materialwissenschaften > Lehrstuhl Kristallographie
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Fachgruppe Materialwissenschaften > Lehrstuhl Kristallographie > Lehrstuhl Kristallographie - Univ.-Prof. Dr. Sander van Smaalen
Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Fachgruppe Materialwissenschaften
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 530 Physik
Eingestellt am: 06 Jul 2017 06:37
Letzte Änderung: 06 Jul 2017 06:37
URI: https://eref.uni-bayreuth.de/id/eprint/38412