Titlebar

Bibliografische Daten exportieren
Literatur vom gleichen Autor
plus auf ERef Bayreuth
plus bei Google Scholar

 

Deep Learning Process Prediction with Discrete and Continuous Data Features

Titelangaben

Schönig, Stefan ; Jasinski, Richard ; Ackermann, Lars ; Jablonski, Stefan:
Deep Learning Process Prediction with Discrete and Continuous Data Features.
In: Proceedings of the 13th International Conference on Evaluation of Novel Approaches to Software Engineering. - s.l. , 2018

Abstract

Process prediction is a well known method to support participants in performing business processes. These methods use event logs of executed cases as a knowledge base to make predictions for running instances. A range of such techniques have been proposed for different tasks, e.g., for predicting the next activity or the remaining time of a running instance. Neural networks with Long Short-Term Memory architectures have turned out to be highly customizable and precise in predicting the next activity in a running case. Current research, however, focuses on the prediction of future activities using activity labels and resource information while further event log information, in particular discrete and continuous event data is neglected. In this paper, we show how prediction accuracy can significantly be improved by incorporating event data attributes. We regard this extension of conventional algorithms as a substantial contribution to the field of activity prediction. The new approach has been validated with a recent real-life event log.

Weitere Angaben

Publikationsform: Aufsatz in einem Buch
Begutachteter Beitrag: Ja
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik > Lehrstuhl Angewandte Informatik IV > Lehrstuhl Angewandte Informatik IV - Univ.-Prof. Dr.-Ing. Stefan Jablonski
Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik > Lehrstuhl Angewandte Informatik IV
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik
Eingestellt am: 16 Jan 2018 11:41
Letzte Änderung: 23 Nov 2018 08:24
URI: https://eref.uni-bayreuth.de/id/eprint/41777