Titlebar

Bibliografische Daten exportieren
Literatur vom gleichen Autor
plus auf ERef Bayreuth
plus bei Google Scholar

 

Analyzing the influence of particle size and stiffness state of the nanofiller on the mechanical properties of epoxy/clay nanocomposites using a novel shear-stiff nano-mica

Titelangaben

Kothmann, Martin ; Ziadeh, Mazen ; Bakis, Gökhan ; Rios de Anda, Agustin ; Breu, Josef ; Altstädt, Volker:
Analyzing the influence of particle size and stiffness state of the nanofiller on the mechanical properties of epoxy/clay nanocomposites using a novel shear-stiff nano-mica.
In: Journal of Materials Science. Bd. 50 (Juli 2015) Heft 14 . - S. 4845-4859.
ISSN 1573-4803
DOI: https://doi.org/10.1007/s10853-015-9028-7

Abstract

The mechanical properties of epoxy/clay nanocomposites were investigated in relation to the particle size and shear stiffness state of the dispersed nanoplatelets. The fracture toughness and the underlying toughening mechanisms were thoroughly discussed in detail. For this study, a highly pure synthetic fluorohectorite with large lateral extensions (≈3.8 µm) was used and compared to natural montmorillonite characterized by significantly smaller lateral extensions (≈400 nm). Moreover, for the synthetic fluorohectorite, the subtle balance between layer charge density and the hydration enthalpy of interlayer cations allows for switching between a shear-labile and shear-stiff state, something impossible for the natural material. To ensure optimum dispersion, solution blending was followed by three roll milling for nanocomposite preparation. The addition of all three types of clay used in this study provoked a decrease in glass transition temperature, which indicated a moderate interfacial strength. The maximum increase in fracture toughness and strain energy release rate was observed for the nanocomposites prepared with the large and shear-stiff fluorohectorites at a particle content as low as 2.2 vol%. Morphological investigations by scanning electron microscopy of the fracture surfaces revealed the contribution of several micro-mechanical toughening mechanisms. In contrast to the small natural montmorillonite, the large synthetic nanoplatelets promoted additional energy dissipating mechanisms such as crack deflection and crack pinning leading to an enhanced fracture toughness. These observations are discussed in details using fracture mechanical approaches.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: Fracture Toughness; Energy Release Rate; Neat Epoxy; Crack Deflection
Institutionen der Universität: Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Anorganische Chemie I > Lehrstuhl Anorganische Chemie I - Univ.-Prof. Dr. Josef Breu
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Polymere Werkstoffe > Lehrstuhl Polymere Werkstoffe - Univ.-Prof. Dr.-Ing. Volker Altstädt
Forschungseinrichtungen > Sonderforschungsbereiche, Forschergruppen > SFB 840 Von partikulären Nanosystemen zur Mesotechnologie
Forschungseinrichtungen > Sonderforschungsbereiche, Forschergruppen > SFB 840 Von partikulären Nanosystemen zur Mesotechnologie > SFB 840 - TP B 3
Fakultäten
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie
Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Chemie > Lehrstuhl Anorganische Chemie I
Fakultäten > Fakultät für Ingenieurwissenschaften
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Polymere Werkstoffe
Forschungseinrichtungen
Forschungseinrichtungen > Sonderforschungsbereiche, Forschergruppen
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 540 Chemie
Eingestellt am: 29 Mär 2018 07:41
Letzte Änderung: 29 Mär 2018 07:41
URI: https://eref.uni-bayreuth.de/id/eprint/43143