Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Does the Reconstitution of RC-LH1 Complexes from Rhodopseudomonas acidophila Strain 10050 into a Phospholipid Bilayer Yield the Optimum Environment for Optical Spectroscopy?

Title data

Böhm, Paul S. ; Kunz, Ralf ; Southall, June ; Cogdell, Richard J. ; Köhler, Jürgen:
Does the Reconstitution of RC-LH1 Complexes from Rhodopseudomonas acidophila Strain 10050 into a Phospholipid Bilayer Yield the Optimum Environment for Optical Spectroscopy?
In: The Journal of Physical Chemistry B. Vol. 117 (2013) Issue 48 . - pp. 15004-15013.
ISSN 1520-5207
DOI: https://doi.org/10.1021/jp409980k

Abstract in another language

We have investigated reaction-center light-harvesting 1 (RC-LH1) complexes from Rhodopseudomonas (Rps.) acidophila in detergent buffer solution and reconstituted into a phospholipid bilayer and compared the results with the outcome of an earlier study conducted on RC-LH1 immobilized in polyvinyl alcohol (PVA). The aim of this study was to test whether the immobilization of the complexes in a PVA matrix might lead to a deterioration of the proteins and thereby limit the accessible information that can be obtained from optical spectroscopy. It has been found that the complexes dissolved in a detergent buffer solution are subject to fast spectral dynamics preventing any meaningful application of single-molecule spectroscopy. In contrast, for the bilayer samples it is revealed that the reconstitution process results in a significantly larger fraction of broken complexes with respect to the preparation of the complexes in a PVA film. Moreover, we find that for the intact complexes the statistics of the key spectral features, such as the spectral separations of the bands and the mutual orientation of their transition-dipole moments, show no variation dependent on using either a bilayer or PVA as a matrix. Given the additional effort involved in the reconstitution process, the lower amount of intact RC-LH1 complexes and, concerning the decisive spectral details, the identical results with respect to embedding the complexes in a PVA matrix, we come to the conclusion that the immobilization of these proteins in a PVA matrix is a good choice for conducting low-temperature experiments on individual light-harvesting complexes.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics > Lehrstuhl Experimentalphysik IX - Spektroskopie weicher Materie > Lehrstuhl Experimentalphysik IX - Spektroskopie weicher Materie - Univ.-Prof. Dr. Jürgen Köhler
Faculties
Faculties > Faculty of Mathematics, Physics und Computer Science
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Physics > Lehrstuhl Experimentalphysik IX - Spektroskopie weicher Materie
Result of work at the UBT: Yes
DDC Subjects: 500 Science > 530 Physics
Date Deposited: 10 Apr 2018 11:45
Last Modified: 10 Apr 2018 11:45
URI: https://eref.uni-bayreuth.de/id/eprint/43276