Titelangaben
    
    Hof, Frits ; Kern, Walter ; Kurz, Sascha ; Paulusma, Daniël:
Simple Games versus Weighted Voting Games.
  
    
     In: Deng, Xiaotie
     
     
     (Hrsg.):
     Algorithmic Game Theory : Proceedings. -
     Cham
     : Springer
    , 
     2018
    . - S. 69-81
    
    . - (Lecture Notes in Computer Science
     ; 11059
    )
   
     
   
ISBN 978-3-319-99659-2
    
DOI: https://doi.org/10.1007/978-3-319-99660-8_7
    
     
  
  
Weitere URLs
Abstract
A simple game (N,v) is given by a set N of n players and a partition of 2^N into a set L of losing coalitions L' with value v(L')=0 that is closed under taking subsets and a set W of winning coalitions W' with v(W')=1. Simple games with alpha= \min_{p>=0}\max_{W' in W,L' in L} p(L')/p(W') <1 are known as weighted voting games. Freixas and Kurz (IJGT, 2014) conjectured that alpha<=n/4 for every simple game (N,v). We confirm this conjecture for two complementary cases, namely when all minimal winning coalitions have size 3 and when no minimal winning coalition has size 3. As a general bound we prove that alpha<=2n/7 for every simple game (N,v). For complete simple games, Freixas and Kurz conjectured that alpha=O(sqrt(n)). We prove this conjecture up to a ln n factor. We also prove that for graphic simple games, that is, simple games in which every minimal winning coalition has size 2, computing alpha is NP-hard, but polynomial-time solvable if the underlying graph is bipartite. Moreover, we show that for every graphic simple game, deciding if alpha<a is polynomial-time solvable for every fixed a>0.
Weitere Angaben
| Publikationsform: | Aufsatz in einem Buch | 
|---|---|
| Begutachteter Beitrag: | Ja | 
| Keywords: | simple game; weighted voting game; graphic simple game; complete simple game | 
        
| Fachklassifikationen: | Mathematics Subject Classification Code: 91B12 94C10 | 
        
| Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Wirtschaftsmathematik Profilfelder > Emerging Fields > Governance and Responsibility Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut Profilfelder Profilfelder > Emerging Fields  | 
        
| Titel an der UBT entstanden: | Ja | 
| Themengebiete aus DDC: | 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik 500 Naturwissenschaften und Mathematik > 510 Mathematik  | 
        
| Eingestellt am: | 30 Aug 2018 06:29 | 
| Letzte Änderung: | 06 Okt 2025 12:08 | 
| URI: | https://eref.uni-bayreuth.de/id/eprint/45634 | 
        
 bei Google Scholar