Literatur vom gleichen Autor/der gleichen Autor*in
plus bei Google Scholar

Bibliografische Daten exportieren
 

Accelerating explicit ODE methods on GPUs by kernel fusion

Titelangaben

Korch, Matthias ; Werner, Tim:
Accelerating explicit ODE methods on GPUs by kernel fusion.
In: Concurrency and Computation. Bd. 30 (2018) Heft 18 . - e4470.
ISSN 1532-0634
DOI: https://doi.org/10.1002/cpe.4470

Abstract

Graphics processing units (GPUs) have a promising architecture for implementing highly parallel solution methods for systems of ordinary differential equations (ODEs). However, their high performance comes at the price of caveats such as small caches or wide SIMD. For ODE methods, optimizing the memory access pattern is often crucial. In this article, instead of considering only one specific method, we generalize the description of explicit ODE methods by using data flow graphs consisting of basic operations that are suitable to cover the types of computations occurring in all common explicit methods. After showing that the straightforward approach for processing the data flow graph by calling one kernel per basic operation is memory bound, we explain how the number of memory accesses can be reduced by the kernel fusion technique, which fuses several basic operations into one kernel. Moreover, we will present enabling transformations that allow additional fusions and thus can reduce the number of memory accesses even further. We apply these optimizations to three different classes of explicit ODE methods: embedded Runge–Kutta (RK) methods, parallel iterated RK (PIRK) methods, and peer methods. A detailed experimental evaluation on three modern GPUs showed speedups between 1.86 and 3.51 compared to unfused implementations.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Begutachteter Beitrag: Ja
Keywords: CUDA; explicit methods; GPU; initial value problems; kernel fusion; locality; numerical integration; OpenCL; ordinary differential equations; parallel; peer methods; PIRK methods; Runge-Kutta methods; scalability
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik > Lehrstuhl Angewandte Informatik II > Lehrstuhl Angewandte Informatik II - Univ.-Prof. Dr. Thomas Rauber
Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Institut für Informatik > Lehrstuhl Angewandte Informatik II
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik
Eingestellt am: 10 Dec 2019 09:07
Letzte Änderung: 16 Aug 2023 08:49
URI: https://eref.uni-bayreuth.de/id/eprint/46036