Titelangaben
    
    Hof, Frits ; Kern, Walter ; Kurz, Sascha ; Pashkovich, Kanstantsin ; Paulusma, Daniël:
Simple games versus weighted voting games: Bounding the critical threshold value.
  
    
    
    
    
    
    
    
     Bayreuth
    
    
    
    , 
    2018
    . - 10 S.
    
    
    
     
    
    
    
    
     
  
  
Abstract
A simple game (N,v) is given by a set N of $n$ players and a partition of the set of subsets of N into a set of losing coalitions L with value v(L)=0 that is closed under taking subsets and a set W of winning coalitions with v(W)=1.  Simple games with alpha= min _{p>=0} max_{W' in W, L' in L} p(L')/p(W')<1 are exactly the weighted voting games. We show that alpha<=n/4 for every simple game (N,v), confirming the conjecture of Freixas and Kurz (IJGT, 2014). For complete simple games, Freixas and Kurz conjectured that alpha=O(sqrt(n))$. We prove this conjecture up to a (ln n) factor. We also prove that for graphic simple games, that is, simple games in which every minimal winning coalition has size 2, computing alpha is NP-hard, but polynomial-time solvable if the underlying graph is bipartite. Moreover, we show that for every graphic simple game, deciding if alpha<a is polynomial-time solvable for every fixed a>0.
Weitere Angaben
| Publikationsform: | Preprint, Postprint | 
|---|---|
| Keywords: | simple game; weighted voting game; graphic simple game; complete simple game | 
        
| Fachklassifikationen: | Mathematics Subject Classification Code: 91B12 94C10 | 
        
| Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Wirtschaftsmathematik Profilfelder > Emerging Fields > Governance and Responsibility Fakultäten Profilfelder Profilfelder > Emerging Fields  | 
        
| Titel an der UBT entstanden: | Ja | 
| Themengebiete aus DDC: | 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik 500 Naturwissenschaften und Mathematik > 510 Mathematik  | 
        
| Eingestellt am: | 27 Okt 2018 21:00 | 
| Letzte Änderung: | 14 Mär 2019 14:26 | 
| URI: | https://eref.uni-bayreuth.de/id/eprint/46166 | 
        
 bei Google Scholar