Titlebar

Bibliografische Daten exportieren
Literatur vom gleichen Autor
plus auf ERef Bayreuth
plus bei Google Scholar

 

Subspace packings

Titelangaben

Etzion, Tuvi ; Kurz, Sascha ; Otal, Kamil ; Özbudak, Ferruh:
Subspace packings.
Bayreuth , 2018 . - 10 S.

Volltext

Link zum Volltext (externe URL): Volltext

Abstract

The Grassmannian G_q(n,k) is the set of all k-dimensional subspaces of the vector space GF(q)^n. It is well known that codes in the Grassmannian space can be used for error-correction in random network coding. On the other hand, these codes are q-analogs of codes in the Johnson scheme, i.e. constant dimension codes. These codes of the Grassmannian G_q(n,k) also form a family of q-analogs of block designs and they are called subspace designs. The application of subspace codes has motivated extensive work on the q-analogs of block designs.

In this paper, we examine one of the last families of q-analogs of block designs which was not considered before. This family called subspace packings is the q-analog of packings. This family of designs was considered recently for network coding solution for a family of multicast networks called the generalized combination networks. A subspace packing t-(n,k,lambda)^m_q is a set S
of k-dimensional subspaces from G_q(n,k) such that each t-dimensional subspace of G_q(n,t) is contained in at most lambda elements of S. The goal of this work is to consider the largest size of such subspace packings.

Weitere Angaben

Publikationsform: Preprint, Postprint, Working paper, Diskussionspapier
Keywords: random network coding; subspace codes; packings; designs; q-analogs
Fachklassifikationen: Mathematics Subject Classification Code: 51E20 (11T71 94B25)
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Wirtschaftsmathematik
Fakultäten
Titel an der UBT entstanden: Ja
Themengebiete aus DDC: 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik
500 Naturwissenschaften und Mathematik > 510 Mathematik
Eingestellt am: 17 Nov 2018 22:00
Letzte Änderung: 19 Nov 2018 08:30
URI: https://eref.uni-bayreuth.de/id/eprint/46330