Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Carboxy-terminal extension stabilizes the topological stereoisomers of guanylin

Title data

Schulz, Axel ; Escher, Sylvia ; Marx, Ute C. ; Meyer, Markus ; Rösch, Paul ; Forssmann, Wolf-Georg ; Adermann, Knut:
Carboxy-terminal extension stabilizes the topological stereoisomers of guanylin.
In: The Journal of Peptide Research. Vol. 52 (December 1998) Issue 6 . - pp. 518-525.
ISSN 1747-0285
DOI: https://doi.org/10.1111/j.1399-3011.1998.tb01256.x

Abstract in another language

The peptide hormone guanylin constitutes two topological stereoisomers, which are connected through an equilibrium of interconversion. To investigate the importance of amino acid residues in the central region between the inner cysteines and at the carboxy terminus for this isomerism, synthetic derivatives of guanylin were compared by HPLC, 2D1H NMR spectroscopy and by their guanylyl cyclase-C (GC-C)-activating potency. An increase in the central sterical bulk by introduction of diiodo-Tyr9 had virtually no effect on the isomerization kinetics. Compared to guanylin, carboxy-terminal amidation did not affect the equilibrium between the two isoforms either. In contrast, two significantly stabilized isomers were obtained by extending the carboxy terminus of guanylin with one additional leucine resembling the characteristic of human uroguanylin isomers. This effect was intensified by a further Lys-Lys extension, thus revealing that the conformational exchange between the guanylin isomers is dependent on the extent of the sterical hindrance in the carboxy-terminal region of this peptide. Demonstrated by 2D NMR spectroscopy, the separated isomers of the carboxy-terminally extended derivatives of guanylin exhibit unambiguously closely related structures as found originally for guanylin isomers, which are only detectable as a mixture. Because only one of the stabilized guanylin isomers activates guanylyl cyclase-C, the three-dimensional structure of the GC-C-activating guanylin isomer is now defined. The stabilized isoforms of guanylin described in this study represent suitable tools for the separate functional investigation of the GC-C-agonistic isomer of guanylin as well as of its isomeric counterpart.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Former Professors > Chair Biopolymers - Univ.-Prof. Dr. Paul Rösch
Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Former Professors
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Biopolymers
Result of work at the UBT: Yes
DDC Subjects: 500 Science > 540 Chemistry
500 Science > 570 Life sciences, biology
Date Deposited: 23 Jan 2019 08:14
Last Modified: 16 May 2019 05:37
URI: https://eref.uni-bayreuth.de/id/eprint/46989