Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

Solution structure of the glycosylated second type 2 module of fibronectin

Title data

Sticht, Heinrich ; Pickford, Andrew R. ; Potts, Jennifer R. ; Campbell, Ian D.:
Solution structure of the glycosylated second type 2 module of fibronectin.
In: Journal of Molecular Biology. Vol. 276 (February 1998) Issue 1 . - pp. 177-187.
ISSN 0022-2836
DOI: https://doi.org/10.1006/jmbi.1997.1528

Abstract in another language

Fibronectin is an extracellular matrix glycoprotein that plays a role in a number of physiological processes involving cell adhesion and migration. The modules of the fibronectin monomer are organized into proteolytically resistant domains that in isolation retain their affinity for various ligands. The tertiary structure of the glycosylated second type 2 module (2F2) from the gelatin-binding domain of fibronectin was determined by two-dimensional nuclear magnetic resonance spectroscopy and simulated annealing. The structure is well defined with an overall fold typical of F2 modules, showing two double-stranded antiparallel beta-sheets and a partially solvent-exposed hydrophobic cluster. An N-terminal beta-sheet, that was not present in previously determined F2 module structures, may be important for defining the relative orientation of adjacent F2 modules in fibronectin. This is the first three-dimensional structure of a glycosylated module of fibronectin, and provides insight into the possible role of the glycosylation in protein stability, protease resistance and modulation of collagen binding. Based on the structures of the isolated modules, models for the 1F22F2 pair were generated by randomly changing the orientation of the linker peptide between the modules. The models suggest that the two putative collagen binding sites in the pair form discrete binding sites, rather than combining to form a single binding site.

Further data

Item Type: Article in a journal
Refereed: Yes
Institutions of the University: Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Former Professors > Chair Biopolymers - Univ.-Prof. Dr. Paul Rösch
Faculties
Faculties > Faculty of Biology, Chemistry and Earth Sciences
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Former Professors
Faculties > Faculty of Biology, Chemistry and Earth Sciences > Department of Chemistry > Chair Biopolymers
Result of work at the UBT: Yes
DDC Subjects: 500 Science > 540 Chemistry
500 Science > 570 Life sciences, biology
Date Deposited: 23 Jan 2019 09:53
Last Modified: 16 May 2019 05:37
URI: https://eref.uni-bayreuth.de/id/eprint/46994